SoCo (Sonos Controller)

Documentation
Release 0.7

Rahim Sonawalla, et al.

June 05, 2014






Contents

1 Contents

3

1.1 Tutorial . . . . . . e e e e e e e 3

1.2 Thesocomodule . . . . . . . . . . . . e e e 3

1.3 Plugins . . . . o o o e e e e e e e e e e 9

1.4  Unitandintegration testS . . . . . . . . . . . . ... e e e e 10

1.5 Thedata_ structuressubmodule . . . . . . . . . . . . . . . 13

1.6 Release notes . . . . . . . v o it e e e e e e e e 22

2 Indices and tables 25
Python Module Index 27







SoCo (Sonos Controller) Documentation, Release 0.7

SoCo (Sonos Controller) is a Python library to control your Sonos speakers.

Contents 1



SoCo (Sonos Controller) Documentation, Release 0.7

2 Contents



CHAPTER 1

Contents

1.1 Tutorial

SoCo allows you to control your Sonos sound system from a Python program. For a quick start have a look at the
example applications that come with the library.

1.1.1 Discovery

For discovering the Sonos devices in your network, use the SonosDiscovery class.

sd = SonosDiscovery ()
ips = sd.get_speaker_ips()

1.1.2 Music

Once one of the available devices is selected, the SoCo class can be used to control it. Have a look at the 7he soco
module for all available commands.

sonos = SoCo (ip)
sonos.partymode ()

1.2 The soco module

soco.discover ()
Discover Sonos zones on the local network.

Return an iterator providing SoCo instances for each zone found.

class soco.SonosDiscovery
Retained for backward compatibility only. Will be removed in future releases

Deprecated since version 0.7: Use discover () instead.

class soco.SoCo (ip_address)
A simple class for controlling a Sonos speaker.

For any given set of arguments to __init__, only one instance of this class may be created. Subsequent attempts
to create an instance with the same arguments will return the previously created instance. This means that all



https://github.com/rahims/SoCo/tree/master/examples

SoCo (Sonos Controller) Documentation, Release 0.7

SoCo instances created with the same ip address are in fact the same SoCo instance, reflecting the real world
position.

Public functions:

play —-- Plays the current item.

play_uri -- Plays a track or a music stream by URI.

play_from_queue -- Plays an item in the queue.

pause —-- Pause the currently playing track.

stop —- Stop the currently playing track.

seek ——- Move the currently playing track a given elapsed time.

next -- Go to the next track.

previous —-- Go back to the previous track.

switch_to_line_in -- Switch the speaker’s input to line-in.

switch_to_tv —-- Switch the speaker’s input to TV.

get_current_track_info —-- Get information about the currently playing
track.

get_speaker_info -- Get information about the Sonos speaker.

partymode —-- Put all the speakers in the network in the same group.

join -- Join this speaker to another "master" speaker.

unjoin —-- Remove this speaker from a group.

get_queue —-- Get information about the queue.

get_folders —-- Get search folders from the music library

get_artists —-- Get artists from the music library

get_album_artists —-- Get album artists from the music library

get_albums —-- Get albums from the music library

get_genres —-—- Get genres from the music library

get_composers —— Get composers from the music library

get_tracks —-- Get tracks from the music library

get_playlists —— Get playlists from the music library

get_music_library_information -- Get information from the music library

get_current_transport_info —-- get speakers playing state

add_to_queue —-- Add a track to the end of the queue

remove_from_gqueue —-— Remove a track from the queue

clear_queue —- Remove all tracks from queue

get_favorite_radio_shows —-—- Get favorite radio shows from Sonos’

Radio app.

get_favorite_radio_stations —-- Get favorite radio stations.

get_group_coordinator —-- Get the coordinator for a grouped
collection of Sonos units.

get_speakers_ip -- Get the IP addresses of all the Sonos

speakers in the network.

Properties:

mute —— The speaker’s mute status.

volume —-- The speaker’s volume.

bass —— The speaker’s bass EQ.

treble —- The speaker’s treble EQ.

loudness —-- The status of the speaker’s loudness compensation.
status_light —-- The state of the Sonos status light.
player_name —-- The speaker’s name.

play_mode -- The queue’s repeat/shuffle settings.

Warning: These properties are not cached and will obtain information over the network, so may take longer
than expected to set or return a value. It may be a good idea for you to cache the value in your own code.

add_to_queue (queueable_item)
Adds a queueable item to the queue

4 Chapter 1. Contents



SoCo (Sonos Controller) Documentation, Release 0.7

bass
The speaker’s bass EQ. An integer between -10 and 10.

clear_queue ()
Removes all tracks from the queue.

Returns: True if the Sonos speaker cleared the queue.
Raises SoCoException (or a subclass) upon errors.

get_album_artists (start=0, max_items=100)

Convinience method for get_music_library_information () with
search_type="album_artists’. For details on remaining arguments refer to the docstring for that
method.

get_albums (start=0, max_items=100)
Convinience method for get_music_library_information () with search_type="albums’. For
details on remaining arguments refer to the docstring for that method.

get_artists (start=0, max_items=100)
Convinience method for get_music_library_information () with search_type="artists’. For
details on remaining arguments refer to the docstring for that method.

get_composers (start=0, max_items=100)
Convinience method for get_music_library_information () with search_type="composers’.
For details on remaining arguments refer to the docstring for that method.

get_current_track_info ()
Get information about the currently playing track.

Returns: A dictionary containing the following information about the currently playing track:
playlist_position, duration, title, artist, album, position and a link to the album art.

If we’re unable to return data for a field, we’ll return an empty string. This can happen for all kinds of
reasons so be sure to check values. For example, a track may not have complete metadata and be missing
an album name. In this case track[’album’] will be an empty string.

get_current_transport_info ()
Get the current playback state

Returns: A dictionary containing the following information about the speakers playing state cur-
rent_transport_state (PLAYING, PAUSED_PLAYBACK, STOPPED), current_trasnport_status (OK, ?),
current_speed(1,?)

This allows us to know if speaker is playing or not. Don’t know other states of CurrentTransportStatus and
CurrentSpeed.

get_favorite_radio_shows (start=0, max_items=100)
Get favorite radio shows from Sonos’ Radio app.

Returns: A list containing the total number of favorites, the number of favorites returned, and the actual
list of favorite radio shows, represented as a dictionary with title and uri keys.

Depending on what you’re building, you’ll want to check to see if the total number of favorites is greater
than the amount you requested (max_items), if it is, use start to page through and get the entire list of
favorites.

get_favorite_radio_stations (start=0, max_items=100)
Get favorite radio stations from Sonos’ Radio app.

Returns: A list containing the total number of favorites, the number of favorites returned, and the actual
list of favorite radio stations, represented as a dictionary with title and uri keys.

1.2. The soco module 5



SoCo (Sonos Controller) Documentation, Release 0.7

Depending on what you’re building, you’ll want to check to see if the total number of favorites is greater
than the amount you requested (max_items), if it is, use start to page through and get the entire list of
favorites.

get_genres (start=0, max_items=100)
Convinience method for get_music_library_information () with search_type=’genres’. For
details on remaining arguments refer to the docstring for that method.

get_group_coordinator (zone_name)
Get the IP address of the Sonos system that is coordinator for the group containing zone_name

Code contributed by Aaron Daubman (daubman @gmail.com) Murali Allada (amu-
ralis @hotmail.com)

Arguments: zone_name — Name of the Zone, for which you need a coordinator
Returns: The IP address of the coordinator or None if one cannot be determined

get_music_library information (search_type, start=0, max_items=100)
Retrieve information about the music library

Parameters

» search_type — The kind of information to retrieve. Can be one of: ‘artists’, ‘al-
bum_artists’, ‘albums’, ‘genres’, ‘composers’, ‘tracks’, ‘share’ and ‘playlists’, where
playlists are the imported file based playlists from the music library

e start — Starting number of returned matches

¢ max_items — Maximum number of returned matches. NOTE: The maximum may be
restricted by the unit, presumably due to transfer size consideration, so check the returned
number against the requested.

Returns A dictionary with metadata for the search, with the keys ‘number_returned’, ‘up-
date_id’, ‘total_matches’ and an ‘item_list’ list with the search results. The search results are
instances of one of MLArtist, MLAlbumArtist, MLAlbum, MLGenre, MLComposer,
MLTrack,MLShare and MLPlaylist depending on the type of the search.

Raises SoCoException upon errors

NOTE: The playlists that are returned with the ‘playlists’ search, are the playlists imported from (files in)
the music library, they are not the Sonos playlists.

The information about the which searches can be performed and the form of the query has been gathered
from the Janos project: http://sourceforge.net/projects/janos/ Props to the authors of that project.

get_playlists (start=0, max_items=100)
Convinience method for get_music_library_information () with search_type="playlists’. For
details on remaining arguments refer to the docstring for that method.

NOTE: The playlists that are referred to here are the playlist (files) imported from the music library, they
are not the Sonos playlists.

get_queue (start=0, max_items=100)
Get information about the queue

Parameters

* start — Starting number of returned matches

¢ max_items — Maximum number of returned matches
Returns A list of QueueItemn.

This method is heavly based on Sam Soffes (aka soffes) ruby implementation

6 Chapter 1. Contents


mailto:daubman@gmail.com
mailto:amuralis@hotmail.com
mailto:amuralis@hotmail.com
http://sourceforge.net/projects/janos/

SoCo (Sonos Controller) Documentation, Release 0.7

get_speaker_info (refresh=False)
Get information about the Sonos speaker.

Arguments: refresh — Refresh the speaker info cache.
Returns: Information about the Sonos speaker, such as the UID, MAC Address, and Zone Name.

get_speakers_ip (refresh=False)
Get the IP addresses of all the Sonos speakers in the network.

Code contributed by Thomas Bartvig (thomas.bartvig@ gmail.com)
Arguments: refresh — Refresh the speakers IP cache.
Returns: IP addresses of the Sonos speakers.

get_tracks (start=0, max_items=100)
Convinience method for get_music_library_information () with search_type="tracks’. For
details on remaining arguments refer to the docstring for that method.

join (master_uid)
Join this speaker to another “master” speaker.

Code contributed by Thomas Bartvig (thomas.bartvig@gmail.com)
Returns: True if this speaker has joined the master speaker
Raises SoCoException (or a subclass) upon errors.

loudness
The Sonos speaker’s loudness compensation. True if on, otherwise False.

Loudness is a complicated topic. You can find a nice summary about this feature here:
http://forums.sonos.com/showthread.php ?p=4698#post4698

mute
The speaker’s mute state. True if muted, False otherwise

next ()
Go to the next track.

Returns: True if the Sonos speaker successfully skipped to the next track.
Raises SoCoException (or a subclass) upon errors.

Keep in mind that next() can return errors for a variety of reasons. For example, if the Sonos is streaming
Pandora and you call next() several times in quick succession an error code will likely be returned (since
Pandora has limits on how many songs can be skipped).

partymode ()
Put all the speakers in the network in the same group, a.k.a Party Mode.

This blog shows the initial research responsible for this: http:/blog.travelmarx.com/2010/06/exploring-
sonos-via-upnp.html

The trick seems to be (only tested on a two-speaker setup) to tell each speaker which to join. There’s
probably a bit more to it if multiple groups have been defined.

Code contributed by Thomas Bartvig (thomas.bartvig@gmail.com)
Returns: True if partymode is set

Raises SoCoException (or a subclass) upon errors.

1.2. The soco module 7


mailto:thomas.bartvig@gmail.com
mailto:thomas.bartvig@gmail.com
http://forums.sonos.com/showthread.php?p=4698#post4698
http://blog.travelmarx.com/2010/06/exploring-sonos-via-upnp.html
http://blog.travelmarx.com/2010/06/exploring-sonos-via-upnp.html
mailto:thomas.bartvig@gmail.com

SoCo (Sonos Controller) Documentation, Release 0.7

pause ()
Pause the currently playing track.

Returns: True if the Sonos speaker successfully paused the track.
Raises SoCoException (or a subclass) upon errors.

play ()
Play the currently selected track.

Returns: True if the Sonos speaker successfully started playing the track.
Raises SoCoException (or a subclass) upon errors.

play_from_queue (queue_index)
Play an item from the queue. The track number is required as an argument, where the first track is 0.

Returns: True if the Sonos speaker successfully started playing the track.
Raises SoCoException (or a subclass) upon errors.

play_mode
The queue’s play mode. Case-insensitive options are:

NORMAL - Turns off shuffle and repeat. REPEAT_ALL — Turns on repeat and turns off shuffle. SHUF-
FLE — Turns on shuffle and repeat. (It’s strange, I know.) SHUFFLE_NOREPEAT — Turns on shuffle and
turns off repeat.

play_uri (uri=u’‘, meta=u’")
Play a given stream. Pauses the queue.

Arguments: uri — URI of a stream to be played. meta — The track metadata to show in the player, DIDL
format.

Returns: True if the Sonos speaker successfully started playing the track.
Raises SoCoException (or a subclass) upon errors.

player_name
The speaker’s name. A string.

previous ()
Go back to the previously played track.

Returns: True if the Sonos speaker successfully went to the previous track.
Raises SoCoException (or a subclass) upon errors.

Keep in mind that previous() can return errors for a variety of reasons. For example, previous() will return
an error code (error code 701) if the Sonos is streaming Pandora since you can’t go back on tracks.

remove_from_queue (index)
Removes a track from the queue.

index: the index of the track to remove; first item in the queue is 1
Returns: True if the Sonos speaker successfully removed the track
Raises SoCoException (or a subclass) upon errors.

seek (timestamp)
Seeks to a given timestamp in the current track, specified in the format of HH:MM:SS or H:MM:SS.

Returns: True if the Sonos speaker successfully seeked to the timecode.

Raises SoCoException (or a subclass) upon errors.

8 Chapter 1. Contents



SoCo (Sonos Controller) Documentation, Release 0.7

speaker_ip
Retained for backward compatibility only. Will be removed in future releases

Deprecated since version 0.7: Use ip_address instead.

status_1light
The white Sonos status light between the mute button and the volume up button on the speaker. True if on,
otherwise False.

stop ()
Stop the currently playing track.

Returns: True if the Sonos speaker successfully stopped the playing track.
Raises SoCoException (or a subclass) upon errors.

switch_to_line_in()
Switch the speaker’s input to line-in.

Returns: True if the Sonos speaker successfully switched to line-in.

If an error occurs, we’ll attempt to parse the error and return a UPnP error code. If that fails, the raw
response sent back from the Sonos speaker will be returned.

Raises SoCoException (or a subclass) upon errors.

switch_to_tv ()
Switch the speaker’s input to TV.

Returns: True if the Sonos speaker successfully switched to TV.

If an error occurs, we’ll attempt to parse the error and return a UPnP error code. If that fails, the raw
response sent back from the Sonos speaker will be returned.

Raises SoCoException (or a subclass) upon errors.

treble
The speaker’s treble EQ. An integer between -10 and 10.

unjoin ()
Remove this speaker from a group.

Seems to work ok even if you remove what was previously the group master from it’s own group. If the
speaker was not in a group also returns ok.

Returns: True if this speaker has left the group.
Raises SoCoException (or a subclass) upon errors.

volume
The speaker’s volume. An integer between 0 and 100.

exception soco.SoCoException

base exception raised by SoCo, containing the UPnP error code

exception soco .UnknownSoCoException

raised if reason of the error can not be extracted

The exception object will contain the raw response sent back from the speaker

1.3 Plugins

Plugins can extend the functionality of SoCo.

1.3. Plugins 9



SoCo (Sonos Controller) Documentation, Release 0.7

1.3.1 Creating a Plugin
To write a plugin, simply extend the class soco.plugins.SoCoPlugin. The __init__ method of the plugin
should accept an SoCo instance as the first positional argument, which it should pass to its super constructor.

The class soco.plugins.example.ExamplePlugin contains an example plugin implementation.

1.3.2 Using a Plugin

To use a plugin, it can be loaded and instantiated directly.

# create a plugin by normal instantiation
from soco.plugins.example import ExamplePlugin

# create a new plugin, pass the soco instance to it
myplugin = ExamplePlugin(soco, ’'a user’)

# do something with your plugin
print ’'Testing’, myplugin.name
myplugin.music_plugin_stop ()

Alternatively a plugin can also be loaded by its name using SoCoPlugin.from_name ().

# get a plugin by name (eg from a config file)
myplugin = SoCoPlugin.from_name ('’ soco.plugins.example.ExamplePlugin’,
soco, ’'some user’)

# do something with your plugin
print ’'Testing’, myplugin.name
myplugin.music_plugin_play ()

1.3.3 The SoCoPlugin class
class soco.plugins.SoCoPlugin (soco)
The base class for SoCo plugins

classmethod from name (fullname, soco, *args, **kwargs)
Instantiate a plugin by its full name

name
human-readable name of the plugin

1.4 Unit and integration tests

There are two sorts of tests written for the SoCo package. Unit tests implement elementary checks of whether the
individual methods produce the expected results. Integration tests check that the package as a whole is able to interface
propertly with the Sonos hardware. Such tests are especially useful during re-factoring and to check that already
implemented functionality continues to work past updates to the Sonos units’ internal software.

1.4.1 Setting up your environment

To run the unit tests, you will need to have the py.test testing tool installed. You will also need a copy of Mock

Mock comes with Python >=3.3, but has been backported for Python 2.7

10 Chapter 1. Contents


http://pytest.org/latest
http://www.voidspace.org.uk/python/mock/

SoCo (Sonos Controller) Documentation, Release 0.7

You can install them and other development dependencies using the requirements-dev.txt file like this:

pip install -r requirements-dev.txt

1.4.2 Running the unit tests
There are different ways of running the unit tests. The easiest is to use py.test’ s automatic test discovery. Just
change to the root directory of the SoCo package and type:

py.test

For others, see the py.test documentation

1.4.3 Running the integration tests

At the moment, the integration tests cannot be run under the control of py . test. To run them, enter the unittest
folder in the source code checkout and run the test execution script execute_unittests.py (it is required that
the SoCo checkout is added to the Python path of your system). To run all the unit tests for the SoCo class execute the
following command:

python execute_unittests.py —-—-modules soco —--ip 192.168.0.110

where the IP address should be replaced with the IP address of the Sonos® unit you want to use for the unit tests
(NOTE! At present the unit tests for the SoCo module requires your Sonos® unit to be playing local network music
library tracks from the queue and have at least two such tracks in the queue). You can get a list of all the units in your
network and their IP addresses by running:

python execute_unittests.py --list

To get the help for the unit test execution script which contains a description of all the options run:

python execute_unittests.py —--help

1.4.4 Unit test code structure and naming conventions

The unit tests for the SoCo code should be organized according to the following guidelines.

One unit test module per class under test

Unit tests should be organized into modules, one module, i.e. one file, for each class that should be tested. The
module should be named similarly to the class except replacing CamelCase with underscores and followed by
_unittest.py.

Example: Unit tests for the class FooBar should be stored in foo_bar_unittests.py.

One unit test class per method under test

Inside the unit test modules the unit test should be organized into one unit test case class per method under test. In
order for the test execution script to be able to calculate the test coverage, the test classes should be named the same
as the methods under test except that the lower case underscores should be converted to CamelCase. If the method is
private, i.e. prefixed with 1 or 2 underscores, the test case class name should be prefixed with the word Private.

Examples:

1.4. Unit and integration tests 11


http://pytest.org/latest/usage.html

SoCo (Sonos Controller) Documentation, Release 0.7

Name of method under test Name of test case class
get_current_track_info | GetCurrentTrackInfo
__parse_error PrivateParseError
_my_hidden_method PrivateMyHiddenMethod

1.4.5 Add an unit test to an existing unit test module

To add a unit test case to an existing unit test module Foo first check with the following command which methods that
does not yet have unit tests:

python execute_unittests.py --modules foo —--coverage

After having identified a method to write a unit test for, consider what criteria should be tested, e.g. if the method
executes and returns the expected output on valid input and if it fails as expected on invalid input. Then implement the
unit test by writing a class for it, following the naming convention mentioned in section One unit test class per method
under test. You can read more about unit test classes in the reference documentation and there is a good introduction

to unit testing in Mark Pilgrim’s “Dive into Python” (though the aspects of test driven development, that it describes,
is not a requirement for SoCo development).

Special unit test design consideration for SoCo
SoCo is developed purely by volunteers in their spare time. This leads to some special consideration during unit test
design.

First of, volunteers will usually not have extra Sonos® units dedicated for testing. For this reason the unit tests should
be developed in such a way that they can be run on units in use and with people around, so e.g it should be avoided
settings the volume to max.

Second, being developed in peoples spare time, the development is likely a recreational activity, that might just be
accompanied by music from the same unit that should be tested. For this reason, that unit should be left in the same
state after test as it was before. That means that the play list, play state, sound settings etc. should be restored after the
testing is complete.

1.4.6 Add a new unit test module (for a new class under test)

To add unit tests for the methods in a new class follow the steps below:
1. Make a new file in the unit test folder named as mentioned in section One unit test module per class under test.

2. (Optional) Define an init function in the unit test module. Do this only if it is necessary to pass information to
the tests at run time. Read more about the init function in the section The init function.

3. Add test case classes to this module. See Add an unit test to an existing unit test module.

Then it is necessary to make the unit test execution framework aware of your unit test module. Do this by making the
following additions to the file execute_unittests.py.:

1. Import the class under test and the unit test module in the beginning of the file

2. Add an item to the UNITTEST_MODULES dict located right after the ### MAIN SCRIPT comment. The
added item should itself be a dictionary with items like this:

UNITTEST_MODULES = {

"soco’: {’name’: ’SoCo’, ’'unittest_module’: soco_unittest,
"class’: soco.SoCo, "arguments’: {’ip’: ARGS.ip}},
"foo_bar’: {’name’: ’"FooBar’, 'unittest_module’: foo_bar_unittest,

12 Chapter 1. Contents


http://docs.python.org/2/library/unittest.html
http://www.diveintopython.net/unit_testing/index.html

SoCo (Sonos Controller) Documentation, Release 0.7

"class’: soco.FooBar,’arguments’: {’ip’: ARGS.ip}}

}

where both the new imaginary foo_bar entry and the existing soco entry are shown for clarity. The arguments
dict is what will be passed on to the 1nit method, see section The init function.

3. Lastly, add the new module to the help text for the modules command line argument, defined in the
_ _build_option_parser function:

parser.add_argument (' ——modules’, type=str, default=None, help='""'
"the modules to run unit test for can be ’
"\’"soco\’, \'foo_bar\’ or \all\’’)

The name that should be added to the text is the key for the unit test module entry in the UNITTEST_MODULES
dict.

The init function

Normally unit tests should be self-contained and therefore they should have all the data they will need built in. How-
ever, that does not apply to SoCo, because the IP’s of the Sonos® units will be required and there is no way to know
them in advance. Therefore, the execution script will call the function init in the unit test modules, if it exists,
with a set of predefined arguments that can then be used for unit test initialization. Note that the function is to be
named init ,not__init___like the class initializers. The init function is called with one argument, which is the
dictionary defined under the key argument s in the unit test modules definition. Please regard this as an exception to
the general unit test best practices guidelines and use it only if there are no other option.

1.5 The data_structures sub module

1.5.1 Introduction
The data structures are used to represent playable items like e.g. a music track or playlist. The data structure classes
are documented in the sections below and the rest of this section contains a more thorough introduction.

To expand a bit, the data_structures sub-module consist of a hierarchy of classes that represent different music
information items. This could be a “real” item such as a music library track, album or genre or an abstract item such
as a music library item.

The main advantages of using classes as apposed to e.g. dicts to contain the information are:
* They are easy to identify
* It is possibly to define and agree on certain abilities such as what is the criteria for two tracks being equal

 Certain functionality for these information object, such as producing the XML that is needed for the UPnP
communication can be attached to the elements themselves.

Many of the items have a lot in common and therefore has shared functionality. This has been imple-
mented by means of inheritance, in such a way that common functionality is always pulled up the inher-
itance hierarchy to the highest point that have this functionality in common. The hierarchy is illustrated
in figure the figure below. The black lines are the lines of inheritance, going from the top down.

1.5. The data_structures sub module 13



SoCo (Sonos Controller) Documentation, Release 0.7

‘ soco.data_structures.MLAIbum ‘

‘ soco.data_structures.MLAIbumAtrtist ‘

‘ soco.data_structures.MLArtist ‘

‘ soco.data_structures.MLComposer ‘

— =

soco.data_structures.MusicLibraryltem soco.data_structures.MLGenre ‘

\

‘ soco.data_structures.MLPlaylist ‘

‘ soco.data_structures.MLShare ‘

‘ soco.data_structures.MLTrack ‘

‘ soco.data_structures.MSAlbum ‘

=

soco.data_structures.Musicinfoltem H soco.data_structures.MusicServiceltem }—»{ soco.data_structures.MSArtist ‘

‘ soco.data_structures.Queueltem ‘ ‘ soco.data_structures.MSPlaylist ‘

‘ soco.data_structures.MSTrack ‘

All data structures are music information items. Three classes inherit from this top level class; the queue
item,themusic library item and the music service item

There are 8 types of music library items, represented by the 8 classes that inherit from it. From these classes
all information items are available as named properties. All of these items contains a title, a URI and a UPnP
class, so these items are defined in the MusicLibraryItem class and inherited by them all. For most items the
ID can be extracted from the URI in the same way, so therefore it is defined in MusicLibraryItem.item_idand
the few classes (MLTrack, MLP1ay1list) that extract the ID differently from the URI then overrides this property.
Besides the information items that they all share, MLTrack and MLA1bum define some extra fields such as album,
album art uriand creator.

One of the more important attributes is did1l_metadata. It is used to produce the metadata that is sent to the
Sonos® units. This metadata is created in an almost identical way, which is the reason that it is implemented in
MusicLibraryItem. It uses the URI (through the ID), the UPnP class and the title that the items are instantiated
with and the two class variables parent_id and _translation. parent_id must be over written in each of
the sub classes, whereas that is only necessary for _translation if the information fields are different from the
default.

1.5.2 Functions

soco.data_structures.ns_tag (ns_id, tag)
Return a namespace/tag item. The ns_id is translated to a full name space via the NS module variable.

soco.data_structures.get_ml_item (xml)
Return the music library item that corresponds to xml. The class is identified by getting the parentID and making
a lookup in the PARENT_ID_TO_CLASS module variable dictionary.

14 Chapter 1. Contents



SoCo (Sonos Controller) Documentation, Release 0.7

1.5.3 Musiclnfoltem

class soco.data_structures.MusicInfoItem
Bases: object
Abstract class for all data structure classes

__dinit__ ()
Initialize the content as an empty dict.

__eq__ (playable_item)
Return the equals comparison result to another playable_item.

__repr__ ()
Return the repr value for the item.

The repr is on the form:

<class_name ’'middle_part[0:40]’ at id_in_hex>

where middle_part is either the title item in content, if it is set, or str (content). The output is also
cleared of non-ascii characters.

str_ ()
Return the str value for the item:

<class_name ’'middle_part[0:40]’ at id_in_hex>

where middle_part is either the title item in content, if it is set, or str (content). The output is also
cleared of non-ascii characters.

1.5.4 MusicLibraryltem
class soco.data_structures.MusicLibraryItem (uri, title, item_class, **kwargs)
Bases: soco.data_structures.MusicInfoItem
Abstract class for a queueable item from the music library.
Variables

* parent_id — The parent ID for the music library item is None, since it is a abstract class
and it should be overwritten in the sub classes

o _translation — The dictionary-key-to-xml-tag-and-namespace- translation used when in-
stantiating a MusicLibraryltems from XML. The default value is shown below. This default
value applies to most sub classes and the rest should overwrite it.

# key: (ns, tag)

_translation = {
"title’: ('dc’, ’'title’),
"uri’ s (77, 'res’),
"item_class’: ('upnp’, ’'class’)

}

__init__ (uri, title, item_class, **kwargs)
Initialize the MusicLibraryltem from parameter arguments.

Parameters

e uri — The URI for the item

1.5. The data_structures sub module 15



SoCo (Sonos Controller) Documentation, Release 0.7

e title — The title for the item
¢ jitem_class — The UPnP class for the item

o **kwargs — Extra information items to form the music library item from. Valid
keys are album, album_art_uri, creator and original_track_number.
original_track_number is an int, all other values are unicode objects.

didl_metadata
Produce the DIDL metadata XML.

This method uses the item_1id attribute (and via that the uri attribute), the item_class attribute and

the t 1t 1e attribute. The metadata will be on the form:

<DIDL-Lite ..NS_INFO..>

<item id="...self.item_id..."
parentID="...cls.parent_id..." restricted="true">
<dc:title>...self.title...</dc:title>
<upnp:class>...self.item class...</upnp:class>

<desc id="cdudn"
nameSpace="urn:schemas-rinconnetworks—-com:metadata-1-0/">
RINCON_AssociatedZPUDN
</desc>
</item>
</DIDL-Lite>

classmethod £rom_dict (content)
Return an instance of this class, created from a dict with parameters.

Parameters content — Dict with information for the music library item. Required and valid
arguments are the same as forthe __init__ method.

classmethod £rom_xml (xml)
Return an instance of this class, created from xml.

Parameters xml — An xml.etree.ElementTree.Element object. The top element usu-
ally is a DIDL-LITE item (NS[’‘]) element. Inside the item element should be the (names-
pace, tag_name) elements in the dictionary-key-to-xml-tag-and-namespace-translation de-
scribed in the class docstring.

item_class

Get and set the UPnP object class as an unicode object.
item id

Return the id.

The id is extracted as the part of the URI after the first # character. For the few music library types where

that is not correct, this method should be overwritten.

title
Get and set the title as an unicode object.

to_dict
Get the dict representation of the instance.

uri
Get and set the URI as an unicode object.

16

Chapter 1. Contents


http://docs.python.org/2/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element

SoCo (Sonos Controller) Documentation, Release 0.7

1.5.5 MLTrack

class soco.data_structures.MLTrack (uri, title, item_class=u’object.item.audioltem.musicTrack’,

**kwargs)
Bases: soco.data_structures.MusicLibraryItem

Class that represents a music library track.
Variables

* parent_id — The parent ID for the MLTrack is ‘A:TRACKS’

» _translation — The dictionary-key-to-xml-tag-and-namespace- translation used when in-

stantiating a MLTrack from XML. The value is shown below

# key: (ns, tag)

_translation = {
"title’: ('dc’, ’'title’),
"creator’: ('dc’, ’'creator’),
"album’: ("upnp’, "album’),
"album_art_uri’: (‘upnp’, ’"albumArtURI’),
"uri’: (', ’'res’),
"original_track_number’: (’upnp’, ’‘originalTrackNumber’),
"item_class’: ('upnp’, ’'class’)

}

__init__ (uri, title, item_class=u’object.item.audioltem.musicTrack’, **kwargs)
Instantiate the MLTrack item by passing the arguments to the super
MusicLibraryItem.__init__ ().

Parameters
¢ uri — The URI for the track
« title — The title of the track

e jtem_class — The UPnP class for the track. The default value
object.item.audioltem.musicTrack

class

is:

o *¥*kwargs — Optional extra information items, valid keys are: album, album_art_uri,
creator, original_track_number. original_track_number is an int.

All other values are unicode objects.

album
Get and set the album as an unicode object.

album_art_uri
Get and set the album art URI as an unicode object.

creator

Get and set the creator as an unicode object.
item id

Return the id.

original_track_number
Get and set the original track number as an int.

1.5. The data_structures sub module

17



SoCo (Sonos Controller) Documentation, Release 0.7

1.5.6 MLAlbum

class soco.data_structures.MLAlbum (uri, title, item_class=u’object.container.album.musicAlbum’,
**kwargs)
Bases: soco.data_structures.MusicLibraryItem

Class that represents a music library album.

Variables
* parent_id — The parent ID for the MLTrack is ‘A:ALBUM’

» _translation — The dictionary-key-to-xml-tag-and-namespace- translation used when in-
stantiating a MLAIbum from XML. The value is shown below

# key: (ns, tag)

_translation = {
"title’: ('dc’, ’'title’),
"creator’: ('dc’, ’'creator’),
"album_art_uri’: (‘upnp’, ’"albumArtURI’),
"uri’ s (77, 'res’),
"item_class’: ('upnp’, ’'class’)

}

__init__ (uri, title, item_class=u’object.container.album.musicAlbum’, **kwargs)
Instantiate the MLAIlbum item by passing the arguments to the
MusicLibraryItem.__init__ ().

super  class

Parameters
¢ uri — The URI for the alum
e title — The title of the album

e jtem_class — The UPnP class for the album. The default wvalue is:
object.container.album.musicAlbum

o **kwargs — Optional extra information items, valid keys are: album_art_uri and
creator. All value should be unicode objects.

album_ art_uri
Get and set the album art URI as an unicode object.

creator
Get and set the creator as an unicode object.

1.5.7 MLArtist

class soco.data_structures.MLArtist (uri, title, item_class=u’object.container.person.musicArtist’)
Bases: soco.data_structures.MusicLibrarylItem

Class that represents a music library artist.

Variables
* parent_id — The parent ID for the MLArtist is ‘A:ARTIST’

» _translation — The dictionary-key-to-xml-tag-and-namespace- translation used when in-
stantiating a MLArtist from XML is inherited from MusicLibraryItem.

18 Chapter 1. Contents



SoCo (Sonos Controller) Documentation, Release 0.7

__init__ (uri, title, item_class=u’object.container.person.musicArtist’)
Instantiate the  MLArtist item by passing the arguments to the super class
MusicLibraryItem.__init__ ().

Parameters
e uri — The URI for the artist
o title — The title of the artist

e jtem_class — The UPnP class for the artist. The default value is:
object.container.person.musicArtist

1.5.8 MLAIbumArtist

class soco.data_structures.MLAlbumArtist (uri, title, item_class=u’object.container.person.musicArtist’)
Bases: soco.data_structures.MusicLibrarylItem

Class that represents a music library album artist.
Variables
* parent_id — The parent ID for the MLAlbumArtist is ‘A:ALBUMARTIST’

o _translation — The dictionary-key-to-xml-tag-and-namespace- translation used when in-
stantiating a MLAIbumArtist from XML is inherited from MusicLibraryItem.

__init__ (uri, title, item_class=u’object.container.person.musicArtist’)
Instantiate the MLAIlbumArtist item by passing the arguments to the super class
MusicLibraryItem.__init__ ().

Parameters
e uri — The URI for the alum artist
e title — The title of the album artist

e item_class — The UPnP class for the album artist. The default value is:
object.container.person.musicArtist

1.5.9 MLGenre

class soco.data_structures.MLGenre (uri, title, item_class=u’object.container.genre.musicGenre’)
Bases: soco.data_structures.MusicLibraryltem

Class that represents a music library genre.
Variables
* parent_id — The parent ID for the MLGenre is ‘A:GENRE’

» _translation — The dictionary-key-to-xml-tag-and-namespace- translation used when in-
stantiating a MLGenre from XML is inherited from MusicLibraryItem.

__dinit__ (uri, title, item_class=u’object.container.genre.musicGenre’)
Instantiate the MLGenre item by passing the arguments to the super class
MusicLibraryItem.__init__ ().

Parameters
e uri — The URI for the genre

* title — The title of the genre

1.5. The data_structures sub module 19



SoCo (Sonos Controller) Documentation, Release 0.7

e item_class — The UPnP class for the genre. The default value is:
object.container.genre.musicGenre

1.5.10 MLComposer

class soco.data_structures.MLComposer (uri, title, item_class=u’object.container.person.composer’)
Bases: soco.data_structures.MusicLibraryItem

Class that represents a music library composer.
Variables
* parent_id — The parent ID for the MLComposer is ‘A:COMPOSER’

» _translation — The dictionary-key-to-xml-tag-and-namespace- translation used when in-
stantiating a MLComposer from XML is inherited from MusicLibraryItem.

__init__ (uri, title, item_class=u’object.container.person.composer’)
Instantiate the MLComposer item by passing the arguments to the super class
MusicLibraryItem._ _init__ ().

Parameters
¢ uri — The URI for the composer
* title — The title of the composer

e item_class — The UPnP class for the composer. The default value is:
object.container.person.composer

1.5.11 MLPlaylist

class soco.data_structures.MLPlaylist (uri, title, item_class=u’object.container.playlistContainer’)
Bases: soco.data_structures.MusicLibraryItem

Class that represents a music library play list.
Variables
 parent_id — The parent ID for the MLPlaylist is ‘A:PLAYLIST’

o _translation — The dictionary-key-to-xml-tag-and-namespace- translation used when in-
stantiating a MLPlaylist from XML is inherited from MusicLibraryItem.

__init__ (uri, title, item_class=u’object.container.playlistContainer’)
Instantiate the MLPlaylist item by passing the arguments to the super class
MusicLibraryItem.__init_ ().

Parameters
* uri — The URI for the playlist
« title — The title of the playlist

e item_class — The UPnP class for the playlist. The default value is:
object.container.playlistContainer
item id
Returns the id.

20 Chapter 1. Contents



SoCo (Sonos Controller) Documentation, Release 0.7

1.5.12 MLShare

class soco.data_structures.MLShare (uri, title, item_class=u’object.container’)
Bases: soco.data_structures.MusicLibraryItem
Class that represents a music library share.

Variables
* parent_id — The parent ID for the MLShare is ‘S:’

o _translation — The dictionary-key-to-xml-tag-and-namespace- translation used when in-
stantiating a MLShare from XML is inherited from MusicLibraryItem.

__init__ (uri, title, item_class=u’object.container’)
Instantiate the  MLShare item by passing the arguments to the super class
MusicLibraryItem._ _init__ ().
Parameters

¢ uri — The URI for the share
* title — The title of the share

¢ item_class — The UPnP class for the share. The default value is: object.container

1.5.13 Queueltem

class soco.data_structures.Queueltem (uri, title, item_class=u’object.item.audioltem.musicTrack’,

**kwargs)
Bases: soco.data_structures.MusicInfoItem

Class that represents a queue item.
Variables
* parent_id — The parent ID for the Queueltem is ‘Q:0’
o _translation — The dictionary-key-to-xml-tag-and-namespace- translation used when in-

stantiating a Queueltem from XML. The value is shown below

# key: (ns, tag)

_translation = {
"title’: (‘dc’, ’'title’),
"creator’: ('dc’, ’'creator’),
"album’: ("upnp’, "album’),
"album_art_uri’: (‘upnp’, ’"albumArtURI’),
"uri’ s (77, 'res’),
"original_track_number’: (’upnp’, ’‘originalTrackNumber’),
"item_class’: ('upnp’, ’'class’)

}

__init__ (uri, title, item_class=u’object.item.audioltem.musicTrack’, **kwargs)
Instantiate the Queueltem by passing the arguments to the super class MusicInfoItem.__init__ ().

Parameters
e uri — The URI for the queue item
* title — The title of the queue item

e item_class — The UPnP class for the queue item. The default value is:
object.item.audioltem.musicTrack

1.5. The data_structures sub module 21



SoCo (Sonos Controller) Documentation, Release 0.7

o **kwargs — Optional extra information items, valid keys are: album, album_art_uri,
creator, original_track_number. original_track_number is an int.
All other values are unicode objects.

album
Get and set the album as an unicode object.

album_art_uri
Get and set the album art URI as an unicode object.

creator
Get and set the creator as an unicode object.

didl_metadata
Produce the DIDL metadata XML. CURRENTLY DISABLED.

classmethod £rom_dict (content)
Return an instance of this class, created from a dict with parameters.

Parameters content — Dict with information for the music library item. Required and valid
arguments are the same as for the __init___ method.

classmethod £rom_xml (xml)
Return an instance of this class, created from xml.

Parameters xml — An xml.etree.ElementTree.Element object. The top element usu-
ally is a DIDL-LITE item (NS[’‘]) element. Inside the item element should be the (names-
pace, tag_name) elements in the dictionary-key-to-xml-tag-and-namespace-translation de-
scribed in the class docstring.

item class
Get and set the UPnP object class as an unicode object.

original_track_number
Get and set the original track number as an int.

title
Get and set the title as an unicode object.

to_dict
Get the dict representation of the instance.

uri
Get and set the URI as an unicode object.

1.6 Release notes

1.6.1 Version 0.7

New Features

¢ All information about queue and music library items, like e.g. the title and album of a track, are now included
in data structure classes instead of dictionaries (the classes are available in the The data_structures sub module
sub-module ). This advantages of this approach are:

— The type of the item is identifiable by its class name
— They have useful __str___ representations and an __equals___ method

— Information is available as named attributes

22 Chapter 1. Contents


http://docs.python.org/2/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element

SoCo (Sonos Controller) Documentation, Release 0.7

— They have the ability to produce their own UPnP meta-data (which is used by the add_to_queue

method).

See the Backwards Compatibility notice below.

* A webservice analyzer has been added in dev_tools/analyse_ws.py (#46).

* The commandline interface has been split into a separate project socos. It provides an command line interface
on top of the SoCo library, and allows users to control their Sonos speakers from scripts and from an interactive

shell.

 Python 3.2 and later is now supported in addition to 2.7.

* A simple version of the first plugin for the Wimp service has been added (#93).

e The new soco.discover () method provides an easier interface for discovering speakers in your network.

SonosDiscovery has been deprecated in favour of it (see Backwards Compatability below).

* SoCo instances are now singletons per IP address. For any given IP address, there is only one SoCo instance.

* The code for generating the XML to be sent to Sonos devices has been completely rewritten, and it is now much
easier to add new functionality. All services exposed by Sonos zones are now available if you need them (#438).

Backwards Compatability

Warning: Please read the section below carefully when upgrading to SoCo 0.7.

Data Structures

The move to using data structure classes for music item information instead of dictionaries introduces some back-
wards incompatible changes in the library (see #83). The get_queue and get_library_information functions (and
all methods derived from the latter) are affected. In the data structure classes, information like e.g. the title is now
available as named attributes. This means that by the update to 0.7 it will also be necessary to update your code like

e.g:

# Version < 0.7

for item in soco.get_queue () :
print item([’title’]

# Version >=0.7

for item in soco.get_queue():
print item.title

SonosDiscovery

The SonosDiscovery class has been deprecated (see #80 and #75).

Instead of the following

>>> import soco
>>> d = soco.SonosDiscovery ()
>>> ips = d.get_speaker_ips|()
>>> for 1 in ips:
s = soco.SoCo (1)
print s.player_name

you should now write

1.6. Release notes

23


https://github.com/SoCo/SoCo/pull/46
https://github.com/SoCo/socos
https://github.com/SoCo/SoCo/pull/93
https://github.com/SoCo/SoCo/pull/48
https://github.com/SoCo/SoCo/pull/83
https://github.com/SoCo/SoCo/pull/80
https://github.com/SoCo/SoCo/issues/75

SoCo (Sonos Controller) Documentation, Release 0.7

>>> import soco

>>> for s in soco.discover () :

print s.player_name

Properties

A number of methods have been replaced with properties, to simplify use (see #62 )

For example, use

soco.volume = 30
soco.volume —=3
soco.status_light = True
instead of

soco.volume (30)

soco.volume (soco.volume () —3)
soco.status_light ("On")

1.6.2 Version 0.6

New features

* Music library information: Several methods has been added to get information about the music library. It is
now possible to get e.g. lists of tracks, albums and artists.

* Raise exceptions on errors: Several SoCo specific exceptions has been added. These exceptions are now
raised e.g. when SoCo encounters communications errors instead of returning an error codes. This introduces a
backwards incompatible change in SoCo that all users should be aware of.

For SoCo developers

¢ Added plugin framework: A plugin framework has been added to SoCo. The primary purpose of this frame-
work is to provide a natural partition of the code, in which code that is specific to the individual music services
is separated out into its own class as a plugin. Read more about the plugin framework in the docs.

* Added unit testing framework: A unit testing framework has been added to SoCo and unit tests has been
written for 30% of the methods in the SoCo class. Please consider supplementing any new functionality with
the appropriate unit tests and fell free to write unit tests for any of the methods that are still missing.

Coming next

* Data structure change: For the next version of SoCo it is planned to change the way SoCo handles data. It is
planned to use classes for all the data structures, both internally and for in- and output. This will introduce a
backwards incompatible change and therefore users of SoCo should be aware that extra work will be needed
upon upgrading from version 0.6 to 0.7. The data structure changes will be described in more detail in the
release notes for version 0.7.

24

Chapter 1. Contents


https://github.com/SoCo/SoCo/pull/62

CHAPTER 2

Indices and tables

* genindex
* modindex

e search

25



SoCo (Sonos Controller) Documentation, Release 0.7

26 Chapter 2. Indices and tables



Python Module Index

soco, 3

27



	Contents
	Tutorial
	The soco module
	Plugins
	Unit and integration tests
	The data_structures sub module
	Release notes

	Indices and tables
	Python Module Index

