

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	SoCo (Sonos Controller) 0.6 documentation

Welcome to SoCo’s documentation!

SoCo (Sonos Controller) is a Python library to control your Sonos speakers.

Contents

	Tutorial
	Discovery

	Music

	Plugins
	Creating a Plugin

	Using a Plugin

	The SoCoPlugin class

	Unit tests
	Running the unit tests

	Unit test code structure and naming conventions

	Add an unit test to an existing unit test module

	Add a new unit test module (for a new class under test)

	The soco module

	Release notes
	Version 0.6

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SoCo (Sonos Controller) 0.6 documentation

Tutorial

SoCo allows you to control your Sonos sound system from a Python program. For
a quick start have a look at the example applications [https://github.com/rahims/SoCo/tree/master/examples] that come with the
library.

Discovery

For discovering the Sonos devices in your network, use the SonosDiscovery
class.

sd = SonosDiscovery()
ips = sd.get_speaker_ips()

Music

Once one of the available devices is selected, the SoCo class can be used
to control it. Have a look at the The soco module for all available commands.

sonos = SoCo(ip)
sonos.partymode()

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SoCo (Sonos Controller) 0.6 documentation

Plugins

Plugins can extend the functionality of SoCo.

Creating a Plugin

To write a plugin, simply extend the class soco.plugins.SoCoPlugin. The
__init__ method of the plugin should accept an SoCo instance as the
first positional argument, which it should pass to its super constructor.

The class soco.plugins.example.ExamplePlugin contains an example plugin
implementation.

Using a Plugin

To use a plugin, it can be loaded and instantiated directly.

create a plugin by normal instantiation
from soco.plugins.example import ExamplePlugin

create a new plugin, pass the soco instance to it
myplugin = ExamplePlugin(soco, 'a user')

do something with your plugin
print 'Testing', myplugin.name
myplugin.music_plugin_stop()

Alternatively a plugin can also be loaded by its name using
SoCoPlugin.from_name().

get a plugin by name (eg from a config file)
myplugin = SoCoPlugin.from_name('soco.plugins.example.ExamplePlugin',
 soco, 'some user')

do something with your plugin
print 'Testing', myplugin.name
myplugin.music_plugin_play()

The SoCoPlugin class

	
class soco.plugins.SoCoPlugin(soco)

	The base class for SoCo plugins

	
classmethod from_name(fullname, soco, *args, **kwargs)

	Instantiate a plugin by its full name

	
name

	human-readable name of the plugin

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SoCo (Sonos Controller) 0.6 documentation

Unit tests

The unit tests written for the SoCo module implements elementary
checks of whether the individual methods produce the expected
results. Such tests are especially useful during re-factoring and to
check that already implemented functionality continues to work past
updates to the Sonos® units internal software.

Running the unit tests

To run the unit tests enter the unittest folder in the source code
checkout and run the unit test execution script
execute_unittests.py (it is required that the SoCo checkout is
added to the Python path of your system). To run all the unit tests
for the SoCo class execute the following command:

python execute_unittests.py --modules soco --ip 192.168.0.110

where the IP address should be replaced with the IP address of the
Sonos® unit you want to use for the unit tests (NOTE! At present the
unit tests for the SoCo module requires your Sonos® unit to be playing
local network music library tracks from the queue and have at least
two such tracks in the queue). You can get a list of all the units in
your network and their IP addresses by running:

python execute_unittests.py --list

To get the help for the unit test execution script which contains a
description of all the options run:

python execute_unittests.py --help

Unit test code structure and naming conventions

The unit tests for the SoCo code should be organized according to
the following guidelines.

One unit test module per class under test

Unit tests should be organized into modules, one module, i.e. one
file, for each class that should be tested. The module should be named
similarly to the class except replacing CamelCase with underscores and
followed by _unittest.py.

Example: Unit tests for the class FooBar should be stored in
foo_bar_unittests.py.

One unit test class per method under test

Inside the unit test modules the unit test should be organized into
one unit test case class per method under test. In order for the test
execution script to be able to calculate the test coverage, the test
classes should be named the same as the methods under test except that
the lower case underscores should be converted to CamelCase. If the
method is private, i.e. prefixed with 1 or 2 underscores, the test
case class name should be prefixed with the word Private.

Examples:

	Name of method under test
	Name of test case class

	get_current_track_info
	GetCurrentTrackInfo

	__parse_error
	PrivateParseError

	_my_hidden_method
	PrivateMyHiddenMethod

Add an unit test to an existing unit test module

To add a unit test case to an existing unit test module Foo first check
with the following command which methods that does not yet have unit tests:

python execute_unittests.py --modules foo --coverage

After having identified a method to write a unit test for, consider
what criteria should be tested, e.g. if the method executes and
returns the expected output on valid input and if it fails as expected on
invalid input. Then implement the unit test by writing a
class for it, following the naming convention mentioned in section
One unit test class per method under test. You can read more about unit test
classes in the reference documentation [http://docs.python.org/2/library/unittest.html] and there is a good
introduction to unit testing in Mark Pilgrim’s “Dive into Python” [http://www.diveintopython.net/unit_testing/index.html] (though the
aspects of test driven development, that it describes, is not a
requirement for SoCo development).

Special unit test design consideration for SoCo

SoCo is developed purely by volunteers in their spare time. This
leads to some special consideration during unit test design.

First of, volunteers will usually not have extra Sonos® units
dedicated for testing. For this reason the unit tests should be developed
in such a way that they can be run on units in use and with people
around, so e.g it should be avoided settings the volume to max.

Second, being developed in peoples spare time, the development is
likely a recreational activity, that might just be accompanied by
music from the same unit that should be tested. For this reason, that
unit should be left in the same state after test as it was
before. That means that the play list, play state, sound settings
etc. should be restored after the testing is complete.

Add a new unit test module (for a new class under test)

To add unit tests for the methods in a new class follow the steps below:

	Make a new file in the unit test folder named as mentioned in
section One unit test module per class under test.

	(Optional) Define an init function in the unit test module. Do
this only if it is necessary to pass information to the tests at
run time. Read more about the init function in the section
The init function.

	Add test case classes to this module. See Add an unit test to an existing unit test module.

Then it is necessary to make the unit test execution framework aware of
your unit test module. Do this by making the following additions to
the file execute_unittests.py.:

	Import the class under test and the unit test module in the
beginning of the file

	Add an item to the UNITTEST_MODULES dict located right after the
MAIN SCRIPT comment. The added item should itself be a
dictionary with items like this:

UNITTEST_MODULES = {
 'soco': {'name': 'SoCo', 'unittest_module': soco_unittest,
 'class': soco.SoCo, 'arguments': {'ip': ARGS.ip}},
 'foo_bar': {'name': 'FooBar', 'unittest_module': foo_bar_unittest,
 'class': soco.FooBar,'arguments': {'ip': ARGS.ip}}
 }

where both the new imaginary foo_bar entry and the existing
soco entry are shown for clarity. The arguments dict is what will be
passed on to the init method, see section
The init function.

	Lastly, add the new module to the help text for the modules
command line argument, defined in the __build_option_parser
function:

parser.add_argument('--modules', type=str, default=None, help=''
 'the modules to run unit test for can be '
 '\'soco\', \'foo_bar\' or \'all\'')

The name that should be added to the text is the key for the unit
test module entry in the UNITTEST_MODULES dict.

The init function

Normally unit tests should be self-contained and therefore they should
have all the data they will need built in. However, that does not
apply to SoCo, because the IP’s of the Sonos® units will be required
and there is no way to know them in advance. Therefore, the execution
script will call the function init in the unit test modules, if it
exists, with a set of predefined arguments that can then be used for
unit test initialization. Note that the function is to be named
init , not __init__ like the class initializers. The init
function is called with one argument, which is the dictionary defined
under the key arguments in the unit test modules definition. Please
regard this as an exception to the general unit test best practices
guidelines and use it only if there are no other option.

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SoCo (Sonos Controller) 0.6 documentation

The soco module

SoCo (Sonos Controller) is a simple library to control Sonos speakers

	
class soco.SonosDiscovery

	A simple class for discovering Sonos speakers.

Public functions:
get_speaker_ips – Get a list of IPs of all zoneplayers.

	
class soco.SoCo(speaker_ip)

	A simple class for controlling a Sonos speaker.

Public functions:
play – Plays the current item.
play_uri – Plays a track or a music stream by URI.
play_from_queue – Plays an item in the queue.
pause – Pause the currently playing track.
stop – Stop the currently playing track.
seek – Move the currently playing track a given elapsed time.
next – Go to the next track.
previous – Go back to the previous track.
mute – Get or Set Mute (or unmute) the speaker.
volume – Get or set the volume of the speaker.
bass – Get or set the speaker’s bass EQ.
set_player_name – set the name of the Sonos Speaker
treble – Set the speaker’s treble EQ.
set_play_mode – Change repeat and shuffle settings on the queue.
set_loudness – Turn on (or off) the speaker’s loudness compensation.
switch_to_line_in – Switch the speaker’s input to line-in.
status_light – Turn on (or off) the Sonos status light.
get_current_track_info – Get information about the currently playing track.
get_speaker_info – Get information about the Sonos speaker.
partymode – Put all the speakers in the network in the same group.
join – Join this speaker to another “master” speaker.
unjoin – Remove this speaker from a group.
get_queue – Get information about the queue.
get_folders – Get search folders from the music library
get_artists – Get artists from the music library
get_album_artists – Get album artists from the music library
get_albums – Get albums from the music library
get_genres – Get genres from the music library
get_composers – Get composers from the music library
get_tracks – Get tracks from the music library
get_playlists – Get playlists from the music library
get_music_library_information – Get information from the music library
get_current_transport_info – get speakers playing state
add_to_queue – Add a track to the end of the queue
remove_from_queue – Remove a track from the queue
clear_queue – Remove all tracks from queue
get_favorite_radio_shows – Get favorite radio shows from Sonos’ Radio app.
get_favorite_radio_stations – Get favorite radio stations.
get_group_coordinator – Get the coordinator for a grouped collection of Sonos units.
get_speakers_ip – Get the IP addresses of all the Sonos speakers in the network.

	
add_to_queue(uri)

	Adds a given track to the queue.

Returns:
If the Sonos speaker successfully added the track, returns the queue
position of the track added.

Raises SoCoException (or a subclass) upon errors.

	
bass(bass=None)

	Get or set the Sonos speaker’s bass EQ.

Arguments:
bass – A value between -10 and 10.

Returns:
If the bass argument was specified: returns true if the Sonos speaker
successfully set the bass EQ.

If the bass argument was not specified: returns the current base value.

Raises SoCoException (or a subclass) upon errors.

	
clear_queue()

	Removes all tracks from the queue.

Returns:
True if the Sonos speaker cleared the queue.

Raises SoCoException (or a subclass) upon errors.

	
get_album_artists(start=0, max_items=100)

	Convinience method for:
get_music_library_information(‘album_artists’)
Refer to the docstring for that method

	
get_albums(start=0, max_items=100)

	Convinience method for: get_music_library_information(‘albums’)
Refer to the docstring for that method

	
get_artists(start=0, max_items=100)

	Convinience method for: get_music_library_information(‘artists’)
Refer to the docstring for that method

	
get_composers(start=0, max_items=100)

	Convinience method for: get_music_library_information(‘composers’)
Refer to the docstring for that method

	
get_current_track_info()

	Get information about the currently playing track.

Returns:
A dictionary containing the following information about the currently
playing track: playlist_position, duration, title, artist, album,
position and a link to the album art.

If we’re unable to return data for a field, we’ll return an empty
string. This can happen for all kinds of reasons so be sure to check
values. For example, a track may not have complete metadata and be
missing an album name. In this case track[‘album’] will be an empty string.

	
get_current_transport_info()

	Get the current playback state

Returns:
A dictionary containing the following information about the speakers playing state
current_transport_state (PLAYING, PAUSED_PLAYBACK, STOPPED),
current_trasnport_status (OK, ?), current_speed(1,?)

This allows us to know if speaker is playing or not. Don’t know other states of
CurrentTransportStatus and CurrentSpeed.

	
get_favorite_radio_shows(start=0, max_items=100)

	Get favorite radio shows from Sonos’ Radio app.

Returns:
A list containing the total number of favorites, the number of favorites
returned, and the actual list of favorite radio shows, represented as a
dictionary with title and uri keys.

Depending on what you’re building, you’ll want to check to see if the
total number of favorites is greater than the amount you
requested (max_items), if it is, use start to page through and
get the entire list of favorites.

	
get_favorite_radio_stations(start=0, max_items=100)

	Get favorite radio stations from Sonos’ Radio app.

Returns:
A list containing the total number of favorites, the number of favorites
returned, and the actual list of favorite radio stations, represented
as a dictionary with title and uri keys.

Depending on what you’re building, you’ll want to check to see if the
total number of favorites is greater than the amount you
requested (max_items), if it is, use start to page through and
get the entire list of favorites.

	
get_genres(start=0, max_items=100)

	Convinience method for: get_music_library_information(‘genres’)
Refer to the docstring for that method.

	
get_group_coordinator(zone_name, refresh=False)

	
	Get the IP address of the Sonos system that is coordinator for

	the group containing zone_name

Code contributed by Aaron Daubman (daubman@gmail.com)

Arguments:
zone_name – the name of the Zone to control for which you need the coordinator

refresh – Refresh the topology cache prior to looking for coordinator

Returns:
The IP address of the coordinator or None of one can not be determined

	
get_music_library_information(search_type, start=0, max_items=100)

	Retrieve information about the music library

Arguments:
search The kind of information to retrieve. Can be one of:

‘folders’, ‘artists’, ‘album_artists’, ‘albums’, ‘genres’,
‘composers’, ‘tracks’ and ‘playlists’, where playlists are
the imported file based playlists from the music library

start starting number of returned matches
max_items maximum number of returned matches. NOTE: The maximum

may be restricted by the unit, presumably due to transfer
size consideration, so check the returned number against
the requested.

Returns a dictionary with metadata for the search, with the keys
‘number_returned’, ‘update_id’, ‘total_matches’ and an ‘item’ list with
the search results. The search results are dicts that with the
following exceptions all has the following keys ‘title’, ‘res’,
‘class’, ‘parent_id’, ‘restricted’, ‘id’, ‘protocol_info’. The
exceptions are; that the playlists item in the folder search has no res
item; the album and track items has an extra ‘creator’ field and the
track items has additional ‘album’, ‘album_art_uri’ and
‘original_track_number’ fields.

Raises SoCoException (or a subclass) upon errors.

The information about the which searches can be performed and the form
of the query has been gathered from the Janos project:
http://sourceforge.net/projects/janos/ Probs to the authors of that
project.

	
get_playlists(start=0, max_items=100)

	Convinience method for: get_music_library_information(‘playlists’)
Refer to the docstring for that method

	
get_queue(start=0, max_items=100)

	Get information about the queue.

Returns:
A list containing a dictionary for each track in the queue. The track dictionary
contains the following information about the track: title, artist, album, album_art, uri

If we’re unable to return data for a field, we’ll return an empty
list. This can happen for all kinds of reasons so be sure to check
values.

This method is heavly based on Sam Soffes (aka soffes) ruby implementation

	
get_speaker_info(refresh=False)

	Get information about the Sonos speaker.

Arguments:
refresh – Refresh the speaker info cache.

Returns:
Information about the Sonos speaker, such as the UID, MAC Address, and
Zone Name.

	
get_speakers_ip(refresh=False)

	Get the IP addresses of all the Sonos speakers in the network.

Code contributed by Thomas Bartvig (thomas.bartvig@gmail.com)

Arguments:
refresh – Refresh the speakers IP cache.

Returns:
IP addresses of the Sonos speakers.

	
get_tracks(start=0, max_items=100)

	Convinience method for: get_music_library_information(‘tracks’)
Refer to the docstring for that method

	
join(master_uid)

	Join this speaker to another “master” speaker.

Code contributed by Thomas Bartvig (thomas.bartvig@gmail.com)

Returns:
True if this speaker has joined the master speaker

Raises SoCoException (or a subclass) upon errors.

	
mute(mute=None)

	Mute or unmute the Sonos speaker.

Arguments:
mute – True to mute. False to unmute.

Returns:
True if the Sonos speaker was successfully muted or unmuted.

If the mute argument was not specified: returns the current mute status
0 for unmuted, 1 for muted

Raises SoCoException (or a subclass) upon errors.

	
next()

	Go to the next track.

Returns:
True if the Sonos speaker successfully skipped to the next track.

Raises SoCoException (or a subclass) upon errors.

Keep in mind that next() can return errors
for a variety of reasons. For example, if the Sonos is streaming
Pandora and you call next() several times in quick succession an error
code will likely be returned (since Pandora has limits on how many
songs can be skipped).

	
partymode()

	Put all the speakers in the network in the same group, a.k.a Party Mode.

This blog shows the initial research responsible for this:

http://travelmarx.blogspot.dk/2010/06/exploring-sonos-via-upnp.html

The trick seems to be (only tested on a two-speaker setup) to tell each

speaker which to join. There’s probably a bit more to it if multiple
groups have been defined.

Code contributed by Thomas Bartvig (thomas.bartvig@gmail.com)

Returns:
True if partymode is set

Raises SoCoException (or a subclass) upon errors.

	
pause()

	Pause the currently playing track.

Returns:
True if the Sonos speaker successfully paused the track.

Raises SoCoException (or a subclass) upon errors.

	
play()

	Play the currently selected track.

Returns:
True if the Sonos speaker successfully started playing the track.

Raises SoCoException (or a subclass) upon errors.

	
play_from_queue(queue_index)

	Play an item from the queue. The track number is required as an
argument, where the first track is 0.

Returns:
True if the Sonos speaker successfully started playing the track.

Raises SoCoException (or a subclass) upon errors.

	
play_uri(uri='', meta='')

	Play a given stream. Pauses the queue.

Arguments:
uri – URI of a stream to be played.
meta — The track metadata to show in the player, DIDL format.

Returns:
True if the Sonos speaker successfully started playing the track.

Raises SoCoException (or a subclass) upon errors.

	
previous()

	Go back to the previously played track.

Returns:
True if the Sonos speaker successfully went to the previous track.

Raises SoCoException (or a subclass) upon errors.

Keep in mind that previous() can return errors
for a variety of reasons. For example, previous() will return an error
code (error code 701) if the Sonos is streaming Pandora since you can’t
go back on tracks.

	
remove_from_queue(index)

	Removes a track from the queue.

index: the index of the track to remove; first item in the queue is 1

Returns:
True if the Sonos speaker successfully removed the track

Raises SoCoException (or a subclass) upon errors.

	
seek(timestamp)

	Seeks to a given timestamp in the current track, specified in the
format of HH:MM:SS or H:MM:SS.

Returns:
True if the Sonos speaker successfully seeked to the timecode.

Raises SoCoException (or a subclass) upon errors.

	
set_loudness(loudness)

	Set the Sonos speaker’s loudness compensation.

Loudness is a complicated topic. You can find a nice summary about this
feature here: http://forums.sonos.com/showthread.php?p=4698#post4698

Arguments:
loudness – True to turn on loudness compensation. False to disable it.

Returns:
True if the Sonos speaker successfully set the loundess compensation.

Raises SoCoException (or a subclass) upon errors.

	
set_play_mode(playmode)

	Sets the play mode for the queue. Case-insensitive options are:
NORMAL – Turns off shuffle and repeat.
REPEAT_ALL – Turns on repeat and turns off shuffle.
SHUFFLE – Turns on shuffle and repeat. (It’s strange, I know.)
SHUFFLE_NOREPEAT – Turns on shuffle and turns off repeat.

Returns:
True if the play mode was successfully set.

Raises SoCoException (or a subclass) upon errors.

	
set_player_name(playername)

	Sets the name of the player

Returns:
True if the player name was successfully set.

Raises SoCoException (or a subclass) upon errors.

	
status_light(led_on)

	Turn on (or off) the white Sonos status light.

Turns on or off the little white light on the Sonos speaker. (It’s
between the mute button and the volume up button on the speaker.)

Arguments:
led_on – True to turn on the light. False to turn off the light.

Returns:
True if the Sonos speaker successfully turned on (or off) the light.

Raises SoCoException (or a subclass) upon errors.

	
stop()

	Stop the currently playing track.

Returns:
True if the Sonos speaker successfully stopped the playing track.

Raises SoCoException (or a subclass) upon errors.

	
switch_to_line_in()

	Switch the speaker’s input to line-in.

Returns:
True if the Sonos speaker successfully switched to line-in.

If an error occurs, we’ll attempt to parse the error and return a UPnP
error code. If that fails, the raw response sent back from the Sonos
speaker will be returned.

Raises SoCoException (or a subclass) upon errors.

	
treble(treble=None)

	Get or set the Sonos speaker’s treble EQ.

Arguments:
treble – A value between -10 and 10.

Returns:
If the treble argument was specified: returns true if the Sonos speaker
successfully set the treble EQ.

If the treble argument was not specified: returns the current treble value.

Raises SoCoException (or a subclass) upon errors.

	
unjoin()

	Remove this speaker from a group.

Seems to work ok even if you remove what was previously the group master
from it’s own group. If the speaker was not in a group also returns ok.

Returns:
True if this speaker has left the group.

Raises SoCoException (or a subclass) upon errors.

	
volume(volume=None)

	Get or set the Sonos speaker volume.

Arguments:
volume – A value between 0 and 100.

Returns:
If the volume argument was specified: returns true if the Sonos speaker
successfully set the volume.

If the volume argument was not specified: returns the current volume of
the Sonos speaker.

Raises SoCoException (or a subclass) upon errors.

	
exception soco.SoCoException

	base exception raised by SoCo, containing the UPnP error code

	
exception soco.UnknownSoCoException

	raised if reason of the error can not be extracted

The exception object will contain the raw response sent back from the
speaker

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	SoCo (Sonos Controller) 0.6 documentation

Release notes

Version 0.6

New features

	Music library information: Several methods has been added to get
information about the music library. It is now possible to get
e.g. lists of tracks, albums and artists.

	Raise exceptions on errors: Several SoCo specific exceptions
has been added. These exceptions are now raised e.g. when SoCo
encounters communications errors instead of returning an error
codes. This introduces a backwards incompatible change in SoCo
that all users should be aware of.

For SoCo developers

	Added plugin framework: A plugin framework has been added to
SoCo. The primary purpose of this framework is to provide a
natural partition of the code, in which code that is specific to
the individual music services is separated out into its own class
as a plugin. Read more about the plugin framework in the docs.

	Added unit testing framework: A unit testing framework has been
added to SoCo and unit tests has been written for 30% of the
methods in the SoCo class. Please consider supplementing any new
functionality with the appropriate unit tests and fell free to write
unit tests for any of the methods that are still missing.

Coming next

	Data structure change: For the next version of SoCo it is
planned to change the way SoCo handles data. It is planned to use
classes for all the data structures, both internally and for in- and
output. This will introduce a backwards incompatible change and
therefore users of SoCo should be aware that extra work will be
needed upon upgrading from version 0.6 to 0.7. The data structure
changes will be described in more detail in the release notes for
version 0.7.

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	SoCo (Sonos Controller) 0.6 documentation

 Python Module Index

 s

 			

 		
 s	

 	
 	
 soco	

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	SoCo (Sonos Controller) 0.6 documentation

Index

 A
 | B
 | C
 | F
 | G
 | J
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V

A

 	

 	add_to_queue() (soco.SoCo method)

B

 	

 	bass() (soco.SoCo method)

C

 	

 	clear_queue() (soco.SoCo method)

F

 	

 	from_name() (soco.plugins.SoCoPlugin class method)

G

 	

 	get_album_artists() (soco.SoCo method)

 	get_albums() (soco.SoCo method)

 	get_artists() (soco.SoCo method)

 	get_composers() (soco.SoCo method)

 	get_current_track_info() (soco.SoCo method)

 	get_current_transport_info() (soco.SoCo method)

 	get_favorite_radio_shows() (soco.SoCo method)

 	get_favorite_radio_stations() (soco.SoCo method)

 	

 	get_genres() (soco.SoCo method)

 	get_group_coordinator() (soco.SoCo method)

 	get_music_library_information() (soco.SoCo method)

 	get_playlists() (soco.SoCo method)

 	get_queue() (soco.SoCo method)

 	get_speaker_info() (soco.SoCo method)

 	get_speakers_ip() (soco.SoCo method)

 	get_tracks() (soco.SoCo method)

J

 	

 	join() (soco.SoCo method)

M

 	

 	mute() (soco.SoCo method)

N

 	

 	name (soco.plugins.SoCoPlugin attribute)

 	

 	next() (soco.SoCo method)

P

 	

 	partymode() (soco.SoCo method)

 	pause() (soco.SoCo method)

 	play() (soco.SoCo method)

 	

 	play_from_queue() (soco.SoCo method)

 	play_uri() (soco.SoCo method)

 	previous() (soco.SoCo method)

R

 	

 	remove_from_queue() (soco.SoCo method)

S

 	

 	seek() (soco.SoCo method)

 	set_loudness() (soco.SoCo method)

 	set_play_mode() (soco.SoCo method)

 	set_player_name() (soco.SoCo method)

 	SoCo (class in soco)

 	soco (module)

 	

 	SoCoException

 	SoCoPlugin (class in soco.plugins)

 	SonosDiscovery (class in soco)

 	status_light() (soco.SoCo method)

 	stop() (soco.SoCo method)

 	switch_to_line_in() (soco.SoCo method)

T

 	

 	treble() (soco.SoCo method)

U

 	

 	unjoin() (soco.SoCo method)

 	

 	UnknownSoCoException

V

 	

 	volume() (soco.SoCo method)

 Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

 _static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/plus.png

_static/up.png

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		SoCo (Sonos Controller) 0.6 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Rahim Sonawalla, et al..
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

