

    
      
          
            
  
Welcome to SoCo’s documentation!

SoCo (Sonos Controller) is a high level Python 3 library to control your
Sonos ® speakers with:

# Import soco and get a SoCo instance
import soco
device = soco.discovery.any_soco()

# Get all albums from the music library that contains the word "Black"
# and add them to the queue
albums = device.music_library.get_albums(search_term='Black')
for album in albums:
    print('Added:', album.title)
    device.add_to_queue(album)

# Dial up the volume (just a bit) and play
device.volume += 10
device.play()





To get up and running quickly with SoCo, start by reading the
getting started page, with installation
instructions and a small tutorial
and then wet your appetite with the micro examples. Then optionally follow up with any of the advanced topics
that pique your interest: Speaker Topologies, Events and
UPnP Services. Finally dive into the the full module
reference documentation.

If you have a question, start by consulting the FAQ. If
your question remains unanswered, post a question in the SoCo/SoCo
Gitter chat room [https://gitter.im/SoCo/SoCo] or in the SoCo
Google group [https://groups.google.com/forum/#!forum/python-soco].

If you are interested in participating in the development, plase read the
development documentation and file a bug [https://github.com/SoCo/SoCo/issues] or make a pull request [https://github.com/SoCo/SoCo/pulls] on Github [https://github.com/SoCo/SoCo].


Contents


User Documentation


	Getting started
	Installation
	From PyPI with pip

	Manual installation from .tar.gz file

	After installation check





	Tutorial
	Discovery

	Music









	Examples
	Getting your devices
	Getting all your devices

	Getting any device

	Getting a named device





	Handling groups of devices
	Information about a group

	Join/unjoin devices

	Party mode





	Playback control
	Play, pause and stop

	More playback control with next, previous and seek

	Control of a group





	Seeing and manipulating the queue
	Getting the queue

	Clearing the queue





	Listing and deleting music library shares





	Frequently Asked Questions
	Why can’t I play a URI from music service X with the play_uri() method?

	Why can’t I add a URI from music service X to the queue with the add_uri_to_queue() method?

	Can I make my Sonos® speaker play music from my local hard drive with SoCo?

	How can I save, then restore the previous playing Sonos state ?





	Plugins
	Creating a Plugin

	Using a Plugin

	The SoCoPlugin class





	Authors






In depth topics


	Speaker Topologies
	Zone Group





	UPnP Services
	Inspecting

	Events





	Events
	The events_twisted module

	The events_asyncio module

	Example: setting up

	Examples: specific features





	The Music Library Data Structures






API documentation


	soco package
	Subpackages
	soco.music_services package

	soco.plugins package





	Submodules
	soco.alarms module

	soco.cache module

	soco.config module

	soco.core module

	soco.data_structures module

	soco.discovery module

	soco.events module

	soco.events_base module

	soco.events_twisted module

	soco.events_asyncio module

	soco.exceptions module

	soco.groups module

	soco.ms_data_structures module

	soco.music_library module

	soco.services module

	soco.snapshot module

	soco.soap module

	soco.utils module

	soco.xml module














Release Notes


	SoCo releases
	SoCo 0.26 Release Notes

	SoCo 0.25 Release Notes

	SoCo 0.24 Release Notes

	SoCo 0.23 release notes

	SoCo 0.22 release notes

	SoCo 0.21 release notes

	SoCo 0.20 release notes

	SoCo 0.19 release notes

	SoCo 0.18 release notes

	SoCo 0.17 release notes

	SoCo 0.16 release notes

	SoCo 0.15 release notes

	SoCo 0.14 release notes

	SoCo 0.13 release notes

	SoCo 0.12 release notes

	SoCo 0.11.1 release notes

	SoCo 0.11 release notes

	SoCo 0.10 release notes

	SoCo 0.9 release notes

	SoCo 0.8 release notes

	SoCo 0.7 release notes

	SoCo 0.6 release notes










Development Topics


	Unit and integration tests
	Setting up your environment

	Running the unit tests

	Running the integration tests

	Unit test code structure and naming conventions
	One unit test module per class under test

	One unit test class per method under test





	Add an unit test to an existing unit test module
	Special unit test design consideration for SoCo





	Add a new unit test module (for a new class under test)
	The init function









	Release Procedures
	Preparations

	Create and Publish

	Wrap-Up

	Preparation for next release












Indices and tables


	Index


	Module Index


	Search Page







          

      

      

    




  

    
      
          
            
  
Getting started

This section will help you to quickly get started with SoCo.


Installation

SoCo can be installed either with pip (recommended)
or manually.


From PyPI with pip

The easiest way to install SoCo, is to install it from PyPI [https://pypi.python.org/pypi] with the program pip [https://pip.pypa.io/en/stable/]. This can be done with the command:

pip install soco





This will automatically take care of installing any dependencies you need.



Manual installation from .tar.gz file

SoCo can also be installed manually from the .tar.gz file. First, find the
latest version of SoCo on PyPI [https://pypi.python.org/pypi/soco] and
download the .tar.gz file at the bottom of the page. After that, extract
the content and move into the extracted folder. As an example, for SoCo
0.11.1 and on a Unix type system, this can be done with the following commands:

wget https://pypi.python.org/packages/source/s/soco/soco-0.11.1.tar.gz#md5=73187104385f04d18ce3e56853be1e0c
tar zxvf soco-0.11.1.tar.gz
cd soco-0.11.1/





Have a look inside the requirements.txt file. You will need to install the
dependencies listed in that file yourself. See the documentation for the
individual dependencies for installation instructions.

After the requirements are in place, the package can be install with the
command:

python setup.py install







After installation check

After installation, open a Python interpreter and check that soco can be
imported and that your Sonos® players can be discovered:

>>> import soco
>>> soco.discover()
set([SoCo("192.168.0.16"), SoCo("192.168.0.17"), SoCo("192.168.0.10")])








Tutorial

SoCo allows you to control your Sonos sound system from a Python program. For
a quick start have a look at the example applications [https://github.com/SoCo/SoCo/tree/master/examples] that come with the
library.


Discovery

For discovering the Sonos devices in your network, use soco.discover().

>>> import soco
>>> speakers = soco.discover()





It returns a set [https://docs.python.org/3/library/stdtypes.html#set] of soco.SoCo instances, each representing a
speaker in your network.



Music

You can use those SoCo instances to inspect and interact with your speakers.

>>> speaker = speakers.pop()
>>> speaker.player_name
'Living Room'
>>> speaker.ip_address
u'192.168.0.129'

>>> speaker.volume
10
>>> speaker.volume = 15
>>> speaker.play()





See for soco.SoCo for all methods that are available for a speaker.






          

      

      

    




  

    
      
          
            
  
Examples

This page contains collection of small examples to show of the features of
SoCo and hopefully get you well started with the library.

All examples are shown as if entered in the Python interpreter (as apposed to
executed from a file) because that makes it easy to incorporate output in the
code listings.

All the examples from Playback control and forward
assume that you have followed one of the examples in
Getting your devices and therefore already have a
variable named device that points to a soco.SoCo
instance.


Getting your devices


Getting all your devices

To get all your devices use the soco.discover() function:

>>> import soco
>>> devices = soco.discover()
>>> devices
set([SoCo("192.168.0.10"), SoCo("192.168.0.30"), SoCo("192.168.0.17")])
>>> device = devices.pop()
>>> device
SoCo("192.168.0.16")







Getting any device

To get any device use the soco.discovery.any_soco() function. This can be
useful for cases where you really do not care which one you get, you just need
one e.g. to query for music library information:

>>> import soco
>>> device = soco.discovery.any_soco()
>>> device
SoCo("192.168.0.16")







Getting a named device

Getting a device by player name can be done with the
soco.discovery.by_name() function:

>>> from soco.discovery import by_name
>>> device = by_name("Living Room")
>>> device
SoCo("192.168.1.18")








Handling groups of devices


Information about a group

To get information about a group, pick a device and use the all_groups
property:

>>> import soco
>>> devices = {device.player_name: device for device in soco.discover()}
>>> devices
{'Living Room': SoCo("192.168.1.47"), 'Office': SoCo("192.168.1.48")}

>>> devices['Living Room'].all_groups
{ZoneGroup(uid='RINCON_347E5C68F04001400:2900176654', coordinator=SoCo("192.168.1.48"), members={SoCo("192.168.1.48")}),
 ZoneGroup(uid='RINCON_7828CAF58E6E01400:3613865501', coordinator=SoCo("192.168.1.47"), members={SoCo("192.168.1.47")})}





In the case above, there are two independent devices, one group for each device with the device as its only member.



Join/unjoin devices

You can use the join() method to join a device to another ‘master’ device:

>>> devices['Office'].join(devices['Living Room'])
>>> devices['Living Room'].all_groups
{ZoneGroup(uid='RINCON_7828CAF58E6E01400:3613865501', coordinator=SoCo("192.168.1.47"), members={SoCo("192.168.1.47"), SoCo("192.168.1.48")})}





Now, there is a single group composed of the two devices, with the Living Room device as the coordinator of the group.

Use the unjoin() method to unjoin a device in a group:

>>> devices['Living Room'].unjoin()
>>> devices['Living Room'].all_groups
{ZoneGroup(uid='RINCON_7828CAF58E6E01400:3613865501', coordinator=SoCo("192.168.1.48"), members={SoCo("192.168.1.48")}),
 ZoneGroup(uid='RINCON_7828CAF58E6E01400:3613865502', coordinator=SoCo("192.168.1.47"), members={SoCo("192.168.1.47")})}







Party mode

Use the partymode() method to join all the devices in your network into a single group, in one command:

>>> devices['Living Room'].partymode()
>>> devices['Living Room'].all_groups
{ZoneGroup(uid='RINCON_7828CAF58E6E01400:3613865501', coordinator=SoCo("192.168.1.47"), members={SoCo("192.168.1.47"), SoCo("192.168.1.48")})}








Playback control


Play, pause and stop

The normal play, pause and stop functionality is provided with
similarly named methods (play(),
pause() and stop()) on the
SoCo instance and the current state is included in the
output of get_current_transport_info():

>>> device.get_current_transport_info()['current_transport_state']
'STOPPED'
>>> device.play()
>>> device.get_current_transport_info()['current_transport_state']
'PLAYING'
>>> device.pause()
>>> device.get_current_transport_info()['current_transport_state']
'PAUSED_PLAYBACK'







More playback control with next, previous and seek

Navigating to the next or previous track is similarly done with
methods of the same name (next() and
previous()) and information about the current
position in the queue is contained in the output from
get_current_track_info():

>>> device.get_current_track_info()['playlist_position']
'29'
>>> device.next()
>>> device.get_current_track_info()['playlist_position']
'30'
>>> device.previous()
>>> device.get_current_track_info()['playlist_position']
'29'





Seeking is done with the seek() method. Note
that the input for that method is a string on the form “HH:MM:SS” or
“H:MM:SS”. The current position is also contained in
get_current_track_info():

>>> device.get_current_track_info()['position']
'0:02:59'
>>> device.seek("0:00:30")
>>> device.get_current_track_info()['position']
'0:00:31'







Control of a group

Only the coordinator of a group can control playback (play, pause, stop, next,
previous, seek commands) and manage the queue (add or remove track, clear the queue).
A SoCoSlaveException exception will be raised if a
master-only command is called on a non-coordinator device.

Other commands like volume, loudness and treble, mute, night mode can be controlled on each
individual player in the group.

You can use the is_coordinator property to see if a device is the
coordinator:

>>> devices['Living Room'].is_coordinator
True





From a device, you can get the coordinator of a group by using the
group property of the SoCo instance,
which returns a ZoneGroup instance allowing access to its
coordinator property:

>>> devices['Living Room'].group.coordinator
SoCo("192.168.1.47")
>>> devices['Office'].group.coordinator
SoCo("192.168.1.47")





To set a group volume, use the volume property or the
set_relative_volume() method:

>>> # let's define some aliases ...
>>> lr = devices['Living Room']
>>> of = devices['Office']
>>> lr.volume, of.volume
(17, 10)
>>> g = lr.group  # alias to the group
>>> g.volume
13
>>> g.volume = 20
>>> lr.volume, of.volume
(27, 13)








Seeing and manipulating the queue


Getting the queue

Getting the queue is done with the get_queue() method:

>>> queue = device.get_queue()
>>> queue
Queue(items=[<DidlMusicTrack 'b'Blackened'' at 0x7f2237006dd8>, ..., <DidlMusicTrack 'b'Dyers Eve'' at 0x7f2237006828>])





The returned Queue object is a sequence
of items from the queue, meaning that it can be iterated over and its
length aquired with len() [https://docs.python.org/3/library/functions.html#len]:

>>> len(queue)
9
>>> for item in queue:
...     print(item.title)
...
Blackened
...and Justice for All
Eye of the Beholder
One
The Shortest Straw
Harvester of Sorrow
The Frayed Ends of Sanity
To Live Is to Die
Dyers Eve





The queue object also has total_matches
and number_returned attributes, which
are used to figure out whether paging is required in order to get all
elements of the queue. See the ListOfMusicInfoItems
docstring for details.



Clearing the queue

Clearing the queue is done with the
clear_queue() method as follows:

>>> queue = device.get_queue()
>>> len(queue)
9
>>> device.clear_queue()
>>> queue = device.get_queue()
>>> len(queue)
0








Listing and deleting music library shares

Music library shares are the local network drive shares connected to
Sonos, which host the audio content in the Sonos Music Library.

To list the shares connected to Sonos, use the
list_library_shares() method as follows:

>>> device.music_library.list_library_shares()
['//share_host_01/music', '//share_host_02/music']





The result is a list of network share locations.

To delete a network share, use the
delete_library_share() method as follows:

>>> device.music_library.delete_library_share('//share_host_01/music')





You may want to check that the deletion has succeeded, by waiting a few seconds,
then confirming that the share has disappeared from the list of shares.





          

      

      

    




  

    
      
          
            
  
Frequently Asked Questions

This page contains answers to a few commonly asked questions.


Why can’t I play a URI from music service X with the play_uri() method?

The play_uri() method is only for playing URI’s
with un-restricted access such as podcasts, certain radion stations or
sound clips on webpages. In short, the
play_uri() method is for anything that will play
as a sound file in your browser without authentication.

To play music from a music service, you will need to go via the
music_service module. Here you can search
or browse to obtain music service items, which can be added to the
queue and played.



Why can’t I add a URI from music service X to the queue with the add_uri_to_queue() method?

See Why can’t I play a URI from music service X with the play_uri() method?.



Can I make my Sonos® speaker play music from my local hard drive with SoCo?

At the face of it, no. Sonos® devices can only play music that is
available on the network i.e. can be reached via a URI. So you have
two options:


	You can share your local music folder onto the network and add it
to the Sonos® library as a part of your music collection, which can
then be searched, browsed and played with SoCo.


	You can cheat and make Python serve the files on the fly and play
them as URIs. The play local files [https://github.com/SoCo/SoCo/blob/master/examples/play_local_files/play_local_files.py] example shows one way in which this can be accomplished.






Warning

Note that this example is meant as a convenient way get
started, but that no security precautions has been taken to
e.g. prevent serving other files out into the local
network. Take appropriate actions if this is a concern.








How can I save, then restore the previous playing Sonos state ?

This is useful for scenarios such as when you want to switch to radio,
an announcement or doorbell sound and then back to what was playing previously.
Documentation of the Snapshot snapshot module.

SoCo provides a snapshot module that captures the current state of a player and
then when requested re-instates that state. Examples of it’s use are:



	basic snap example [https://github.com/SoCo/SoCo/blob/master/examples/snapshot/basic_snap.py]


	multi zone example [https://github.com/SoCo/SoCo/blob/master/examples/snapshot/multi_zone_snap.py]











          

      

      

    




  

    
      
          
            
  
Plugins

Plugins can extend the functionality of SoCo.


Creating a Plugin

To write a plugin, simply extend the class soco.plugins.SoCoPlugin.  The
__init__ method of the plugin should accept an SoCo instance as the
first positional argument, which it should pass to its super constructor.

The class soco.plugins.example.ExamplePlugin contains an example plugin
implementation.



Using a Plugin

To use a plugin, it can be loaded and instantiated directly.

# create a plugin by normal instantiation
from soco.plugins.example import ExamplePlugin

# create a new plugin, pass the soco instance to it
myplugin = ExamplePlugin(soco, 'a user')

# do something with your plugin
print 'Testing', myplugin.name
myplugin.music_plugin_stop()





Alternatively a plugin can also be loaded by its name using
SoCoPlugin.from_name().

# get a plugin by name (eg from a config file)
myplugin = SoCoPlugin.from_name('soco.plugins.example.ExamplePlugin',
                                soco, 'some user')

# do something with your plugin
print 'Testing', myplugin.name
myplugin.music_plugin_play()







The SoCoPlugin class


	
class soco.plugins.SoCoPlugin(soco)

	The base class for SoCo plugins.


	
name

	Human-readable name of the plugin






	
classmethod from_name(fullname, soco, *args, **kwargs)

	Instantiate a plugin by its full name.













          

      

      

    




  

    
      
          
            
  
Authors


Project Creator

SoCo was created in 2012 at Music Hack Day Sydney by Rahim Sonawalla



Maintainers


	Lawrence Akka


	Stefan Kögl


	Kenneth Nielsen


	David Harding






Contributors

(alphabetical)


	Petter Aas


	Murali Allada


	Joel Björkman


	Aaron Daubman


	Johan Elmerfjord


	David Harding


	Jeff Hinrichs


	Jeroen Idserda


	Hugo van Kemenade


	Todd Neal


	nixscripter


	Kenneth Nielsen


	Dave O’Connor


	Dennnis O’Reilly


	phut


	Dan Poirier


	Jason Ting


	Peter Toft (pwt)


	Scott G Waters








          

      

      

    




  

    
      
          
            
  
Speaker Topologies

Sonos speakers can be grouped together, and existing groups can be inspected.

Topology is available from each soco.SoCo instance.

>>> my_player.group
ZoneGroup(
    uid='RINCON_000E5879136C01400:58',
    coordinator=SoCo("192.168.1.101"),
    members={SoCo("192.168.1.101"), SoCo("192.168.1.102")}
)





A group of speakers is represented by a soco.groups.ZoneGroup.


Zone Group

Each ZoneGroup contains its coordinator

>>> my_player.group.coordinator
SoCo("192.168.1.101")





which is again a soco.SoCo instance

>>> my_player.group.coordinator.player_name
Kitchen





A ZoneGroup also contains a set of members.

>>> my_player.group.members
{SoCo("192.168.1.101"), SoCo("192.168.1.102")}





For convenience, ZoneGroup is also a container:

>>> for player in my_player.group:
...   print(player.player_name)
Living Room
Kitchen





If you need it, you can get an iterator over all groups on the network:

>>> my_player.all_groups
<generator object all_groups at 0x108cf0c30>









          

      

      

    




  

    
      
          
            
  
UPnP Services

Sonos devices offer several UPnP services which are accessible from classes in
the soco.services module.


	soco.services.AlarmClock


	soco.services.MusicServices


	soco.services.DeviceProperties


	soco.services.SystemProperties


	soco.services.ZoneGroupTopology


	soco.services.GroupManagement


	soco.services.QPlay


	soco.services.ContentDirectory


	soco.services.MS_ConnectionManager


	soco.services.RenderingControl


	soco.services.MR_ConnectionManager


	soco.services.AVTransport


	soco.services.Queue


	soco.services.GroupRenderingControl




All services take a soco.SoCo instance as their first parameter.


Inspecting

To get a list of supported actions you can call the service’s
soco.services.Service.iter_actions(). It yields the service’s actions
with their in_arguments (ie parameters to pass to the action) and out_arguments
(ie returned values).

Each action is an soco.services.Action namedtuple, consisting
of action_name (a string), in_args (a list of
soco.services.Argument namedtuples consisting of name and
argtype), and out_args (ditto), eg:



Events

You can subscribe to the events of a service using the
soco.services.Service.subscribe() method. See Events for details.





          

      

      

    




  

    
      
          
            
  
Events



	The events_twisted module

	The events_asyncio module





You can receive events about changes on the Sonos network.

The soco.services.Service.subscribe() method of a service now returns a
soco.events.Subscription object. To unsubscribe, call the
soco.events.Subscription.unsubscribe() method on the returned
object.

Each subscription has its own queue. Events relevant to that subscription are
put onto that queue, which can be accessed from subscription.events.get().

Some XML parsing is done for you when you retrieve an event from the event
queue. The get and get_nowait methods will return a dict with keys
which are the evented variables and values which are the values sent by the
event.

See the events_twisted module page for more
information about soco.events_twisted.

See the events_asyncio module page for more
information about soco.events_asyncio.


Example: setting up


soco.events

from queue import Empty

import soco
from soco.events import event_listener
import logging
logging.basicConfig(level=logging.DEBUG)
# pick a device
device = soco.discover().pop()
# Subscribe to ZGT events
sub = device.zoneGroupTopology.subscribe()

# print out the events as they arise
while True:
    try:
        event = sub.events.get(timeout=0.5)
        print(event)
        print(event.sid)
        print(event.seq)

    except Empty:
        pass
    except KeyboardInterrupt:
        sub.unsubscribe()
        event_listener.stop()
        break







soco.events_twisted

import soco
from soco import events_twisted
soco.config.EVENTS_MODULE = events_twisted
from twisted.internet import reactor
import logging
logging.basicConfig(level=logging.DEBUG)

def print_event(event):
    print (event)
    print(event.sid)
    print(event.seq)

def main():
    # pick a device
    device = soco.discover().pop()
    # Subscribe to ZGT events
    sub = device.zoneGroupTopology.subscribe().subscription
    # print out the events as they arise
    sub.callback = print_event

    def before_shutdown():
        sub.unsubscribe()
        events_twisted.event_listener.stop()

    reactor.addSystemEventTrigger(
        'before', 'shutdown', before_shutdown)

if __name__=='__main__':
    reactor.callWhenRunning(main)
    reactor.run()







soco.events_asyncio

See soco.events_asyncio for a setup example.




Examples: specific features


Autorenewal

A Subscription may be granted by the Sonos system for a finite time. Unless
it is renewed before it times out, the subscription will become defunct once
it times out. To avoid this, the autorenewal feature can be used. If the
auto-renew flag is set to True, the subscription will automatically renew
when 85% of its time has expired.

soco.events:

sub = device.renderingControl.subscribe(auto_renew=True)





soco.events_twisted:

sub = device.renderingControl.subscribe(auto_renew=True).subscription







Timeout

When subscribing for events, a timeout of a specific duration can be
requested.

soco.events:

sub = device.renderingControl.subscribe(requested_timeout=60) # 60 seconds





soco.events_twisted:

sub = device.renderingControl.subscribe(requested_timeout=60).subscription







Renewal

To renew without relying on autorenewal, the renew method can be used:

sub.renew(requested_timeout=10)







Autorenew failure

If you want your application to respond to an autorenew failure (for example
if the Sonos system dropped off the network), you can set an optional callback
that will be called with the exception that occurred on the attempted
autorenew:

import logging
logging.basicConfig()
log = logging.getLogger(__name__)

def errback(exception): # events_twisted: failure
    msg = 'Error received on autorenew: {}'.format(str(exception))
    # Redundant, as the exception will be logged by the events module
    log.exception(msg)

sub.auto_renew_fail=errback





Note: In soco.events the auto_renew_fail function will be called from a
thread, so it must be threadsafe.



Lenient error handling

By default, if an exception occurs when subscribing, renewing or unsubscribing
a subscription, the exception will be raised. This can be changed so the
exception is logged instead, by setting the strict flag to be false:

sub.unsubscribe(strict=False)







Events_twisted: adding callbacks and errbacks

If the events_twisted module is used, subscribe, renew and unsubscribe return
a Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html], the result of which will be the
Subscription instance. Callbacks
and errbacks can be added in the usual way:

device.renderingControl.subscribe().addCallback(myCallback).addErrback(
    myErrback)










          

      

      

    




  

    
      
          
            
  
The events_twisted module

The soco.events_twisted module has been provided for those wanting to
use soco in an application built on the twisted [https://twistedmatrix.com/trac/] framework who want the event
listener also to be implemented using twisted. The soco.events_twisted
page contains an example of how to use the module.

The event listener is an HTTP server that receives event notifications from
sonos devices. In the soco.events module, it is implemented using
threading and requests. The soco.events module will apply by default,
unless config.EVENTS_MODULE is set to point to the
soco.events_twisted module.

Twisted is not a soco dependency. The existence of the events_twisted module
is not a recommendation or endorsement of twisted. The events_twisted module
has been provided because there are some soco users who use twisted.

If you wish to use events_twisted, it is assumed you already use and are
familiar with the twisted [https://twistedmatrix.com/trac/] framework. No guidance is provided here on how to
install or use twisted.

The main differences between soco.events_twisted and soco.events
are:


	soco.events_twisted uses twisted [https://twistedmatrix.com/trac/], rather than requests [http://docs.python-requests.org/en/master/], for making
and receiving HTTP calls. Network calls in events_twisted return at once
without blocking


	in soco.events_twisted, the event listener runs in the main thread of
execution. Threading is not used


	soco.events_twisted requires a twisted reactor [http://twistedmatrix.com/documents/current/core/howto/reactor-basics.html] to be running in the
application into which it is imported. It will not install or start a
reactor


	soco.events_twisted is not threadsafe and should run in the main
thread of execution. Therefore, subscribing to events should happen in the
main thread of execution. In part, this is because a Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] is not
threadsafe


	in soco.events_twisted, if the requested port is not available, the
event_listener will automatically try the next port, within a maximum range
of 100 of the port initially requested


	in soco.events_twisted, subscribe, renew and unsubscribe return a
Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] the result of which will be the
soco.events_twisted.Subscription instance. The Subscription can be
accessed by adding a callback to receive it. In addition,
Deferred.subscription is set to refer to the Subscription. This is a simpler
and quicker way to get the Subscription


	in soco.events_twisted, Subscription.callback can be set to refer to
a function that will be called each time a soco.events_base.Event
is received by the Subscription. The callback will be passed the Event as
the only parameter. This is likely to be the most convenient way to receive
Events. If Subscription.callback is not set, or is not callable, Events will
be put on the Subscription’s event queue, in the same way as for the events
module.




Please note that all network calls in soco (other than those in
events_twisted) are made using the requests [http://docs.python-requests.org/en/master/] library, which blocks. In an
application based on twisted, it may be desirable to make these network calls
asynchronously, so they do not block. Two solutions to consider are (a) to use
threads when calling other potentially blocking soco methods or (b) to use a
subprocess to handle calls to soco. Twisted provides the deferToThread [http://twistedmatrix.com/documents/current/api/twisted.internet.threads.deferToThread.html] method
for deferring potentially blocking methods to a thread. If a subprocess is to
be used, there will need to be a protocol for communication between the
subprocess and the main application. For a DIY solution, twisted’s
NetstringReceiver [http://twistedmatrix.com/documents/current/api/twisted.protocols.basic.NetstringReceiver.html] may be a useful starting point.




          

      

      

    




  

    
      
          
            
  
The events_asyncio module

The soco.events_asyncio module has been provided for those wanting to
use asyncio for event handling. The soco.events_asyncio
page contains an example of how to use the module.




          

      

      

    




  

    
      
          
            
  
The Music Library Data Structures

This page contains a thorough introduction to the data structures used
for the music library items1. The data
structures are implemented in the soco.data_structures
module and they are used to represent the metadata for music items,
such as music tracks, albums, genres and playlists.

Many music related items have a lot of metadata in common. For example, a music
track and an album may both have artist and title metadata. It is therefore
possible and useful to derive a hierarchy of items, and to implement them as a
class hierarchy. The hierarchy which Sonos has adopted is represented by the
DIDL Lite xml schema [http://www.upnp.org/schemas/av/didl-lite-v2.xsd] (DIDL
stands for ‘Digital Item Description Language’. For more details, see the UPnP
specifications (PDF) [http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v1-Service.pdf].

In the data_structures module, each class represents a particular DIDL-Lite
object and is illustrated in the figure below. The
black lines are the lines of inheritance, going from left to right.

[image: Inheritance diagram of soco.data_structures]
































All data structures are subclasses of the abstract Didl Object item class. You should never need to instantiate this directly. The subclasses are divided into Containers and Items. In general, Containers are things, like playlists, which are intended to contain other items.

At the bottom of the class hierarchy are 10 types of DIDL items. On each of these classes, relevant metadata items
are available as attributes (though they may be implemented as properties).
Each has a title, a URI, an item id and
a UPnP class. Some have other
attributes. For example, DidlMusicTrack and DidlMusicAlbum have
some extra fields such as album,
album_art_uri and creator.

One of the more important attributes which each class has is
didl_metadata. It is used to
produce the metadata that is sent to the Sonos® units in the form of XML. This
metadata is created in an almost identical way for each class, which is why it
is implemented in DidlObject. It uses the URI, the UPnP
class and the title that the items are instantiated with, along with the two
class variables parent_id and _translation.

Footnotes


	1

	Text of the first footnote.








          

      

      

    




  

    
      
          
            
  
soco package


Subpackages



	soco.music_services package
	Submodules
	soco.music_services.accounts module

	soco.music_services.token_store module

	soco.music_services.music_service module









	soco.plugins package
	Submodules
	soco.plugins.example module

	soco.plugins.spotify module

	soco.plugins.wimp module

	soco.plugins.sharelink module

	soco.plugins.plex module





	Module contents











Submodules



	soco.alarms module

	soco.cache module

	soco.config module

	soco.core module

	soco.data_structures module

	soco.discovery module

	soco.events module

	soco.events_base module

	soco.events_twisted module

	soco.events_asyncio module

	soco.exceptions module

	soco.groups module

	soco.ms_data_structures module

	soco.music_library module

	soco.services module

	soco.snapshot module

	soco.soap module

	soco.utils module

	soco.xml module









          

      

      

    




  

    
      
          
            
  
soco.music_services package


Submodules



	soco.music_services.accounts module

	soco.music_services.token_store module

	soco.music_services.music_service module









          

      

      

    




  

    
      
          
            
  
soco.music_services.accounts module

This module contains classes relating to Third Party music services.


	
class soco.music_services.accounts.Account

	An account for a Music Service.

Each service may have more than one account: see the Sonos release notes
for version 5-2 [http://www.sonos.com/en-gb/software/release/5-2]


	
service_type = None

	A unique identifier for the music service to which this
account relates, eg '2311' for Spotify.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
serial_number = None

	A unique identifier for this account


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
nickname = None

	The account’s nickname


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
deleted = None

	True [https://docs.python.org/3/library/constants.html#True] if this account has been deleted


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
username = None

	The username used for logging into the music service


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
metadata = None

	Metadata for the account


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
oa_device_id = None

	Used for OpenAuth id for some services


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
key = None

	Used for OpenAuthid for some services


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
classmethod get_accounts(soco=None)

	Get all accounts known to the Sonos system.


	Parameters

	soco (SoCo, optional) – a SoCo instance to query. If None [https://docs.python.org/3/library/constants.html#None], a
random instance is used. Defaults to None [https://docs.python.org/3/library/constants.html#None].



	Returns

	A dict containing account instances. Each key is the
account’s serial number, and each value is the related Account
instance. Accounts which have been marked as deleted are excluded.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]






Note

Any existing Account instance will have its attributes updated
to those currently stored on the Sonos system.








	
classmethod get_accounts_for_service(service_type)

	Get a list of accounts for a given music service.


	Parameters

	service_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The service_type to use.



	Returns

	A list of Account instances.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]
















          

      

      

    




  

    
      
          
            
  
soco.music_services.token_store module

This module implements token stores for the music services

A user can provide their own token store depending on how that person
wishes to save the tokens, or use the builtin token store (the default)
which saves the tokens in a config file.


	
class soco.music_services.token_store.TokenStoreBase(token_collection='default')

	Token store base class

Instantiate instance variables


	Parameters

	token_collection (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the token collection to use. This may be
used to store different token collections for different client programs.






	
save_token_pair(music_service_id, household_id, token_pair)

	Save a token value pair (token, key) which is a 2 item sequence






	
load_token_pair(music_service_id, household_id)

	Load a token pair (token, key) which is a 2 item sequence






	
has_token(music_service_id, household_id)

	Return True if a token is stored for the music service and household ID










	
class soco.music_services.token_store.JsonFileTokenStore(filepath, token_collection='default')

	Implementation of a token store around a JSON file

Instantiate instance variables


	Parameters

	token_collection (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the token collection to use. This may be
used to store different token collections for different client programs.






	
classmethod from_config_file(token_collection='default')

	Load from file in config directory location


	Parameters

	token_collection (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the token collection to use. This may be
used to store different token collections for different client programs.










	
save_collection()

	Save the collection to a config file






	
save_token_pair(music_service_id, household_id, token_pair)

	Save a token value pair (token, key) which is a 2 item sequence






	
load_token_pair(music_service_id, household_id)

	Load a token pair (token, key) which is a 2 item sequence






	
has_token(music_service_id, household_id)

	Return True if a token is stored for the music service












          

      

      

    




  

    
      
          
            
  
soco.music_services.music_service module

Sonos Music Services interface.

This module provides the MusicService class and related functionality.

Known problems:


	Not all music services follow the pattern layout for the
authentication information completely. This means that it might be
necessary to tweak the code for individual services. This is an
unfortunate result of Sonos not enforcing data hygiene of its
services. The implication for SoCo is that getting all services
to work will require more effort and the kind of broader testing we
will only get by putting the code out there. Hence, if you are an
early adopter of the music service code (added in version 0.26)
consider yourselves guinea pigs.


	There currently is no way to reset an authentication, at least when
authentication has been performed for TIDAL (which uses device link
authentication), after it has been done once for a particular
household ID, it fails on subsequent attempts. What this might mean
is that if you lose the authentication tokens for such a service,
it may not be possible to generate new ones. Obviously, some method
must exist to reset this, but it is not presently implemented.





	
class soco.music_services.music_service.MusicServiceSoapClient(endpoint, timeout, music_service, token_store, device=None)

	A SOAP client for accessing Music Services.

This class handles all the necessary authentication for accessing
third party music services. You are unlikely to need to use it
yourself.


	Parameters

	
	endpoint (str [https://docs.python.org/3/library/stdtypes.html#str]) – The SOAP endpoint. A url.


	timeout (int [https://docs.python.org/3/library/functions.html#int]) – Timeout the connection after this number of
seconds


	music_service (MusicService) – The MusicService object to which
this client belongs.


	token_store (TokenStoreBase) – A token store instance. The token store is
an instance of a subclass of TokenStoreBase


	device (SoCo) – (Optional) If provided this device will be used for the
communication; if not, the device returned by discovery.any_soco will
be used









	
get_soap_header()

	Generate the SOAP authentication header for the related service.

This header contains all the necessary authentication details.


	Returns

	
	A string representation of the XML content of the SOAP

	header.









	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
call(method, args=None)

	Call a method on the server.


	Parameters

	
	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the method to call.


	args (List[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]] or None [https://docs.python.org/3/library/constants.html#None]) – A list of (parameter,
value) pairs representing the parameters of the method.
Defaults to None [https://docs.python.org/3/library/constants.html#None].






	Returns

	An OrderedDict representing the response.



	Return type

	OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]



	Raises

	MusicServiceException – containing details of the error
returned by the music service.










	
begin_authentication()

	Perform the first part of a Device or App Link authentication session

See begin_authentication for details






	
complete_authentication(link_code, link_device_id=None)

	Completes a previously initiated authentication session

See complete_authentication for details










	
class soco.music_services.music_service.MusicService(service_name, token_store=None, device=None)

	The MusicService class provides access to third party music services.

Example

List all the services Sonos knows about:

>>> from soco.music_services import MusicService
>>> print(MusicService.get_all_music_services_names())
['Spotify', 'The Hype Machine', 'Saavn', 'Bandcamp',
 'Stitcher SmartRadio', 'Concert Vault',
 ...
 ]





Interact with TuneIn:

>>> tunein = MusicService('TuneIn')
>>> print (tunein)
<MusicService 'TuneIn' at 0x10ad84e10>





Browse an item. By default, the root item is used. An
SearchResult is returned (the output of print is
here indented for easier reading):

>>> print(tunein.get_metadata())
SearchResult(
  items=[
    <soco.music_services.data_structures.MSContainer object at 0x7f58b038ac10>,
    <soco.music_services.data_structures.MSContainer object at 0x7f58b038a340>,
    <soco.music_services.data_structures.MSContainer object at 0x7f58b038a6d0>,
    <soco.music_services.data_structures.MSContainer object at 0x7f58b038a310>,
    <soco.music_services.data_structures.MSContainer object at 0x7f58b038a100>,
    <soco.music_services.data_structures.MSContainer object at 0x7f58b038a910>
  ],
  search_type='browse'
)





Interact with Spotify (assuming you are subscribed):

>>> spotify = MusicService('Spotify')





Get some metadata about a specific track:

>>> response =  spotify.get_media_metadata(
... item_id='spotify:track:6NmXV4o6bmp704aPGyTVVG')
>>> print(dumps(response, indent=4))
{
    "mediaMetadata": {
        "id": "spotify:track:6NmXV4o6bmp704aPGyTVVG",
        "itemType": "track",
        "title": "Bøn Fra Helvete (Live)",
        "mimeType": "audio/x-spotify",
        "trackMetadata": {
            "artistId": "spotify:artist:1s1DnVoBDfp3jxjjew8cBR",
            "artist": "Kaizers Orchestra",
            "albumId": "spotify:album:6K8NUknbPh5TGaKeZdDwSg",
            "album": "Mann Mot Mann (Ep)",
            "duration": "317",
            "albumArtURI":
            "http://o.scdn.co/image/7b76a5074416e83fa3f3cd...9",
            "canPlay": "true",
            "canSkip": "true",
            "canAddToFavorites": "true"
        }
    }
}
or even a playlist:





>>> response =  spotify.get_metadata(
...    item_id='spotify:user:spotify:playlist:0FQk6BADgIIYd3yTLCThjg')





Find the available search categories, and use them:

>>> print(spotify.available_search_categories)
['albums', 'tracks', 'artists']
>>> result =  spotify.search(category='artists', term='miles')






Note

Some of this code is still unstable, and in particular the data
structures returned by methods such as get_metadata may change in
future.




	Parameters

	
	service_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the music service, as returned by
get_all_music_services_names(), eg ‘Spotify’, or ‘TuneIn’


	token_store (TokenStoreBase) – A token store instance. If none is given,
it will default to an instance of the JsonFileTokenStore using the
‘default’ token collection. The token store must be an instance of a
subclass of TokenStoreBase.


	device (SoCo) – (Optional) If provided this device will be used for the
communication, if not the device returned by discovery.any_soco will
be used






	Raises

	MusicServiceException






	
classmethod get_all_music_services_names()

	Get a list of the names of all available music services.

These services have not necessarily been subscribed to.


	Returns

	A list of strings.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
classmethod get_data_for_name(service_name)

	Get the data relating to a named music service.


	Parameters

	service_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the music service for which data
is required.



	Returns

	Data relating to the music service.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Raises

	MusicServiceException – if the music service cannot be found.










	
available_search_categories

	The list of search categories (each a string) supported.

May include 'artists', 'albums', 'tracks', 'playlists',
'genres', 'stations', 'tags', or others depending on the
service. Some services, such as Spotify, support 'all', but do not
advertise it.

Any of the categories in this list may be used as a value for
category in search().

Example

>>> print(spotify.available_search_categories)
['albums', 'tracks', 'artists']
>>> result =  spotify.search(category='artists', term='miles')






	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
sonos_uri_from_id(item_id)

	Get a uri which can be sent for playing.


	Parameters

	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The unique id of a playable item for this music
service, such as that returned in the metadata from
get_metadata, eg spotify:track:2qs5ZcLByNTctJKbhAZ9JE



	Returns

	A URI of the form: soco://spotify%3Atrack
%3A2qs5ZcLByNTctJKbhAZ9JE?sid=2311&sn=1 which encodes the
item_id, and relevant data from the account for the music
service. This URI can be sent to a Sonos device for playing,
and the device itself will retrieve all the necessary metadata
such as title, album etc.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
desc

	The Sonos descriptor to use for this service.

The Sonos descriptor is used as the content of the <desc> tag in
DIDL metadata, to indicate the relevant music service id.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
begin_authentication()

	Perform the first part of a Device or App Link authentication session

This result of this is an authentication URL, which a user needs visit and
complete the necessary authentication on and then proceed to
complete_authentication


Note

The begin_authentication and complete_authentication methods must be
completed on the same `MusicService` instance unless the link_code
and link_device_id values are passed to complete_authentication. These
two values can be found as attributes on the MusicService instance after
begin_authentication has been executed.




	Returns

	Registration URL used for service linking.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
complete_authentication(link_code=None, link_device_id=None)

	Completes a previously initiated device or app link authentication session

This method is the second part of a two-step authentication process, see
begin_authentication for details on the first part.


	Parameters

	
	link_code (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A link code generated from begin_authentication.
If not provided, cached code will be used.


	link_device_id (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A link device ID generated from
begin_authentication. If not provided, cached device ID will be used.













	
get_metadata(item='root', index=0, count=100, recursive=False)

	Get metadata for a container or item.


	Parameters

	
	item (str [https://docs.python.org/3/library/stdtypes.html#str] or MusicServiceItem) – The container or item to browse
given either as a MusicServiceItem instance or as a str.
Defaults to the root item.


	index (int [https://docs.python.org/3/library/functions.html#int]) – The starting index. Default 0.


	count (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of items to return. Default 100.


	recursive (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the browse should recurse into sub-items
(Does not always work). Defaults to False [https://docs.python.org/3/library/constants.html#False].






	Returns

	The item or container’s metadata,
or None [https://docs.python.org/3/library/constants.html#None].



	Return type

	OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]






See also

The Sonos getMetadata API [http://musicpartners.sonos.com/node/83].








	
search(category, term='', index=0, count=100)

	Search for an item in a category.


	Parameters

	
	category (str [https://docs.python.org/3/library/stdtypes.html#str]) – The search category to use. Standard Sonos search
categories are ‘artists’, ‘albums’, ‘tracks’, ‘playlists’,
‘genres’, ‘stations’, ‘tags’. Not all are available for each
music service. Call available_search_categories for a list for
this service.


	term (str [https://docs.python.org/3/library/stdtypes.html#str]) – The term to search for.


	index (int [https://docs.python.org/3/library/functions.html#int]) – The starting index. Default 0.


	count (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of items to return. Default 100.






	Returns

	The search results, or None [https://docs.python.org/3/library/constants.html#None].



	Return type

	OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]






See also

The Sonos search API [http://musicpartners.sonos.com/node/86]








	
get_media_metadata(item_id)

	Get metadata for a media item.


	Parameters

	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The item for which metadata is required.



	Returns

	The item’s metadata, or None [https://docs.python.org/3/library/constants.html#None]



	Return type

	OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]






See also

The Sonos getMediaMetadata API [http://musicpartners.sonos.com/node/83]








	
get_media_uri(item_id)

	Get a streaming URI for an item.


Note

You should not need to use this directly. It is used by the Sonos
players (not the controllers) to obtain the uri of the media
stream. If you want to have a player play a media item,
you should add it to the queue using its id and let the
player work out where to get the stream from (see On Demand
Playback [http://musicpartners.sonos.com/node/421] and
Programmed Radio [http://musicpartners.sonos.com/node/422])




	Parameters

	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The item for which the URI is required



	Returns

	The item’s streaming URI.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_last_update()

	Get last_update details for this music service.


	Returns

	A dict with keys ‘catalog’,
and ‘favorites’. The value of each is a string which changes
each time the catalog or favorites change. You can use this to
detect when any caches need to be updated.



	Return type

	OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]










	
get_extended_metadata(item_id)

	Get extended metadata for a media item, such as related items.


	Parameters

	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The item for which metadata is required.



	Returns

	The item’s extended metadata or None.



	Return type

	OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]






See also

The Sonos getExtendedMetadata API [http://musicpartners.sonos.com/node/128]








	
get_extended_metadata_text(item_id, metadata_type)

	Get extended metadata text for a media item.


	Parameters

	
	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The item for which metadata is required


	metadata_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of text to return, eg


	or 'ALBUM_NOTES'. Calling ('ARTIST_BIO',) – 


	for the item will show which extended (get_extended_metadata) – 


	are available (metadata_types) – 






	Returns

	The item’s extended metadata text or None



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]






See also

The Sonos getExtendedMetadataText API [http://musicpartners.sonos.com/node/127]














          

      

      

    




  

    
      
          
            
  
soco.plugins package


Submodules



	soco.plugins.example module

	soco.plugins.spotify module

	soco.plugins.wimp module

	soco.plugins.sharelink module

	soco.plugins.plex module







Module contents

This is the __init__ module for the plugins.

It contains the base class for all plugins


	
class soco.plugins.SoCoPlugin(soco)

	The base class for SoCo plugins.


	
name

	Human-readable name of the plugin






	
classmethod from_name(fullname, soco, *args, **kwargs)

	Instantiate a plugin by its full name.













          

      

      

    




  

    
      
          
            
  
soco.plugins.example module

Example implementation of a plugin.


	
class soco.plugins.example.ExamplePlugin(soco, username)

	This file serves as an example of a SoCo plugin.

Initialize the plugin.

The plugin can accept any arguments it requires. It should at
least accept a soco instance which it passes on to the base
class when calling super’s __init__.


	
name

	Human-readable name of the plugin






	
music_plugin_play()

	Play some music.

This is just a reimplementation of the ordinary play function,
to show how we can use the general upnp methods from soco






	
music_plugin_stop()

	Stop the music.

This methods shows how, if we need it, we can use the soco
functionality from inside the plugins












          

      

      

    




  

    
      
          
            
  
soco.plugins.spotify module

The Spotify plugin has been DEPRECATED

The Spotify Plugin has been immediately deprecated (August 2016),
because the API it was based on (The Spotify Metadata API) has been
ended. Since this rendered the plug-in broken, there was no need to
forewarn of the deprecation.

Please consider moving to the new general music services code (in
soco.music_services.music_service), that makes it possible to
retrived information about the available media from all music
services. A short intro for how to use the new code is available
in the API documentation:



	http://docs.python-soco.com/en/latest/api/soco.music_services.music_service.html







and for some information about how to add items from the music
services to the queue, see this gist:



	https://gist.github.com/lawrenceakka/2d21dca590b4fa7e3af2”







This deprecation notification will be deleted for the second release
after 0.12.




          

      

      

    




  

    
      
          
            
  
soco.plugins.wimp module

Plugin for the Wimp music service (Service ID 20)


	
class soco.plugins.wimp.Wimp(soco, username, retries=3, timeout=3.0)

	Class that implements a Wimp plugin.


Note

There is an (apparent) in-consistency in the use of one data
type from the Wimp service. When searching for playlists, the XML
returned by the Wimp server indicates, that the type is an ‘album
list’, and it thus suggest, that this type is used for a list of
tracks (as expected for a playlist), and this data type is reported
to be playable. However, when browsing the music tree, the Wimp
server will return items of ‘album list’ type, but in this case it
is used for a list of albums and it is not playable. This plugin
maintains this (apparent) in-consistency to stick as close to the
reported data as possible, so search for playlists returns
MSAlbumList that are playable and while browsing the content tree
the MSAlbumList items returned to you are not playable.




Note

Wimp in some cases lists tracks that are not available. In these
cases, while it will correctly report these tracks as not being
playable, the containing data structure like e.g. the album they are
on may report that they are playable. Trying to add one of these to
the queue will return a SoCoUPnPException with error code ‘802’.



Initialize the plugin.


	Parameters

	
	soco – The soco instance to retrieve the session ID for the music
service


	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – The username for the music service


	retries (int [https://docs.python.org/3/library/functions.html#int]) – The number of times to retry before giving up


	timeout (float [https://docs.python.org/3/library/functions.html#float]) – The time to wait for the post to complete, before
timing out. The Wimp server seems either slow to respond or to
make the queries internally, so the timeout should probably not be
shorter than 3 seconds.






	Type

	soco.SoCo






Note

If you are using a phone number as the username and are
experiencing problems connecting, then try to prepend the area
code (no + or 00). I.e. if your phone number is 12345678 and you
are from denmark, then use 4512345678. This must be set up the
same way in the Sonos device.  For details see here [https://wimp.zendesk.com/hc/da/articles/204311810-Hvorfor-kan-jeg-ikke-logge-p%C3%A5-WiMP-med-min-Sonos-n%C3%A5r-jeg-har-et-gyldigt-abonnement-] (In Danish)




	
name

	Return the human read-able name for the plugin






	
username

	Return the username.






	
service_id

	Return the service id.






	
description

	Return the music service description for the DIDL metadata on the
form 'SA_RINCON5127_...self.username...'






	
get_tracks(search, start=0, max_items=100)

	Search for tracks.

See get_music_service_information for details on the arguments






	
get_albums(search, start=0, max_items=100)

	Search for albums.

See get_music_service_information for details on the arguments






	
get_artists(search, start=0, max_items=100)

	Search for artists.

See get_music_service_information for details on the arguments






	
get_playlists(search, start=0, max_items=100)

	Search for playlists.

See get_music_service_information for details on the arguments.


Note

Un-intuitively this method returns MSAlbumList items. See
note in class doc string for details.








	
get_music_service_information(search_type, search, start=0, max_items=100)

	Search for music service information items.


	Parameters

	
	search_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of search to perform, possible values are:
‘artists’, ‘albums’, ‘tracks’ and ‘playlists’


	search (str [https://docs.python.org/3/library/stdtypes.html#str]) – The search string to use


	start (int [https://docs.python.org/3/library/functions.html#int]) – The starting index of the returned items


	max_items (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of returned items









Note

Un-intuitively the playlist search returns MSAlbumList
items. See note in class doc string for details.








	
browse(ms_item=None)

	Return the sub-elements of item or of the root if item is None


	Parameters

	item – Instance of sub-class of
soco.data_structures.MusicServiceItem. This object must
have item_id, service_id and extended_id properties






Note

Browsing a MSTrack item will return itself.




Note

This plugin cannot yet set the parent ID of the results
correctly when browsing
soco.data_structures.MSFavorites and
soco.data_structures.MSCollection elements.








	
static id_to_extended_id(item_id, item_class)

	Return the extended ID from an ID.


	Parameters

	
	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of the music library item


	cls (Sub-class of
soco.data_structures.MusicServiceItem) – The class of the music service item








The extended id can be something like 00030020trackid_22757082
where the id is just trackid_22757082. For classes where the prefix is
not known returns None.






	
static form_uri(item_content, item_class)

	Form the URI for a music service element.


	Parameters

	
	item_content (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The content dict of the item


	item_class (Sub-class of
soco.data_structures.MusicServiceItem) – The class of the item



















          

      

      

    




  

    
      
          
            
  
soco.plugins.sharelink module

ShareLink Plugin.


	
class soco.plugins.sharelink.ShareClass

	Base class for supported services.


	
canonical_uri(uri)

	Recognize a share link and return its canonical representation.


	Parameters

	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – A URI like “https://tidal.com/browse/album/157273956”.



	Returns

	The canonical URI or None if not recognized.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
service_number()

	Return the service number.


	Returns

	A number identifying the supported music service.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]










	
static magic()

	Return magic.


	Returns

	Magic prefix/key/class values for each share type.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
extract(uri)

	Extract the share type and encoded URI from a share link.


	Returns

	The shared type, like “album” or “track”.
encoded_uri: An escaped URI with a service-specific format.



	Return type

	share_type














	
class soco.plugins.sharelink.SpotifyShare

	Spotify share class.


	
canonical_uri(uri)

	Recognize a share link and return its canonical representation.


	Parameters

	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – A URI like “https://tidal.com/browse/album/157273956”.



	Returns

	The canonical URI or None if not recognized.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
service_number()

	Return the service number.


	Returns

	A number identifying the supported music service.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]










	
extract(uri)

	Extract the share type and encoded URI from a share link.


	Returns

	The shared type, like “album” or “track”.
encoded_uri: An escaped URI with a service-specific format.



	Return type

	share_type














	
class soco.plugins.sharelink.SpotifyUSShare

	Spotify US share class.


	
service_number()

	Return the service number.


	Returns

	A number identifying the supported music service.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]














	
class soco.plugins.sharelink.TIDALShare

	TIDAL share class.


	
canonical_uri(uri)

	Recognize a share link and return its canonical representation.


	Parameters

	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – A URI like “https://tidal.com/browse/album/157273956”.



	Returns

	The canonical URI or None if not recognized.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
service_number()

	Return the service number.


	Returns

	A number identifying the supported music service.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]










	
extract(uri)

	Extract the share type and encoded URI from a share link.


	Returns

	The shared type, like “album” or “track”.
encoded_uri: An escaped URI with a service-specific format.



	Return type

	share_type














	
class soco.plugins.sharelink.DeezerShare

	Deezer share class.


	
canonical_uri(uri)

	Recognize a share link and return its canonical representation.


	Parameters

	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – A URI like “https://tidal.com/browse/album/157273956”.



	Returns

	The canonical URI or None if not recognized.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
service_number()

	Return the service number.


	Returns

	A number identifying the supported music service.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]










	
extract(uri)

	Extract the share type and encoded URI from a share link.


	Returns

	The shared type, like “album” or “track”.
encoded_uri: An escaped URI with a service-specific format.



	Return type

	share_type














	
class soco.plugins.sharelink.AppleMusicShare

	Apple Music share class.


	
canonical_uri(uri)

	Recognize a share link and return its canonical representation.


	Parameters

	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – A URI like “https://tidal.com/browse/album/157273956”.



	Returns

	The canonical URI or None if not recognized.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
service_number()

	Return the service number.


	Returns

	A number identifying the supported music service.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]










	
extract(uri)

	Extract the share type and encoded URI from a share link.


	Returns

	The shared type, like “album” or “track”.
encoded_uri: An escaped URI with a service-specific format.



	Return type

	share_type














	
class soco.plugins.sharelink.ShareLinkPlugin(soco)

	A SoCo plugin for playing music service share links.

Initialize the plugin.


	
name

	Human-readable name of the plugin






	
is_share_link(uri)

	bool: Is the URI for a supported music service.






	
add_share_link_to_queue(uri, position=0, as_next=False)

	Add a Spotify/Tidal/… item to the queue.

This is similar to soco.add_uri_to_queue() but will work with
music service share links that do not directly point to sound
files.


	Parameters

	
	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – A URI like “spotify:album:6wiUBliPe76YAVpNEdidpY”.


	position (int [https://docs.python.org/3/library/functions.html#int]) – The index (1-based) at which the URI should be
added. Default is 0 (add URI at the end of the queue).


	as_next (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether this URI should be played as the next
track in shuffle mode. This only works if “play_mode=SHUFFLE”.






	Returns

	The index of the new item in the queue.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]
















          

      

      

    




  

    
      
          
            
  
soco.plugins.plex module

This plugin supports playback from a linked Plex music service.
See: https://support.plex.tv/articles/218168898-installing-plex-for-sonos/


	Requires:

	
	Plex music service must be linked in the Sonos app


	Use of ‘plexapi’ library (https://github.com/pkkid/python-plexapi)


	Plex server URI used in ‘plexapi’ must be reachable from Sonos speakers




Example usage:

>>> from plexapi.server import PlexServer
>>> from soco import SoCo
>>> from soco.plugins.plex import PlexPlugin
>>>
>>> s = SoCo("<SPEAKER_IP>")
>>> plugin = PlexPlugin(s)
>>>
>>> plex_uri = "http://1.2.3.4:32400"
>>> plex_token = "<YOUR_PLEX_TOKEN>"
>>> plex = PlexServer(plex_uri, token=plex_token)
>>> music = plex.library.section("Music")
>>> artist = music.get("Stevie Wonder")
>>> album = artist.album("Innervisions")
>>> track = album.tracks()[4]
>>> playlist = plex.playlist("My Playlist")
>>>
>>> plugin.play_now(artist)     # Play all tracks from an artist
>>> plugin.add_to_queue(track)  # Add track to the end of queue
>>> pos = plugin.add_to_queue([album, playlist])  # Enqueue multiple
>>> s.play_from_queue(pos)      # Play items just enqueued










	
class soco.plugins.plex.PlexPlugin(soco)

	A SoCo plugin for playing Plex media using the plexapi library.

Initialize the plugin.


	
name

	Return the name of the plugin.






	
service_name

	Return the service name of the Plex music service.






	
service_info

	Cache and return the service info of the Plex music service.






	
service_id

	Return the service ID of the Plex music service.






	
service_type

	Return the service type of the Plex music service.






	
play_now(plex_media)

	Add the media to the end of the queue and immediately begin playback.






	
add_to_queue(plex_media, position=0, as_next=False)

	Add the provided media to the speaker’s playback queue.


	Parameters

	
	plex_media (plexapi) – The plexapi object representing the Plex media
to be enqueued. Can be one of plexapi.audio.Track,
plexapi.audio.Album, plexapi.audio.Artist or
plexapi.playlist.Playlist. Can also be a list of the above items.


	position (int [https://docs.python.org/3/library/functions.html#int]) – The index (1-based) at which the media should be
added. Default is 0 (append to the end of the queue).


	as_next (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether this media should be played as the next
track in shuffle mode. This only works if “play_mode=SHUFFLE”.

Note: Enqueuing multi-track items like albums or playlists will
select one track randomly as the next item and shuffle the
remaining tracks throughout the queue.








	Returns

	The index of the first item added to the queue.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]
















          

      

      

    




  

    
      
          
            
  
soco.alarms module

This module contains classes relating to Sonos Alarms.


	
soco.alarms.is_valid_recurrence(text)

	Check that text is a valid recurrence string.

A valid recurrence string is  DAILY, ONCE, WEEKDAYS,
WEEKENDS or of the form ON_DDDDDD where D is a number from 0-6
representing a day of the week (Sunday is 0), e.g. ON_034 meaning
Sunday, Wednesday and Thursday


	Parameters

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – the recurrence string to check.



	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the recurrence string is valid, else False [https://docs.python.org/3/library/constants.html#False].



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]





Examples

>>> from soco.alarms import is_valid_recurrence
>>> is_valid_recurrence('WEEKENDS')
True
>>> is_valid_recurrence('')
False
>>> is_valid_recurrence('ON_132')  # Mon, Tue, Wed
True
>>> is_valid_recurrence('ON_666')  # Sat
True
>>> is_valid_recurrence('ON_3421') # Mon, Tue, Wed, Thur
True
>>> is_valid_recurrence('ON_123456789') # Too many digits
False










	
class soco.alarms.Alarms

	A class representing all known Sonos Alarms.

Is a singleton and every Alarms() object will return the same instance.

Example use:

>>> get_alarms()
{469: <Alarm id:469@22:07:41 at 0x7f5198797dc0>,
 470: <Alarm id:470@22:07:46 at 0x7f5198797d60>}
>>> alarms = Alarms()
>>> alarms.update()
>>> alarms.alarms
{469: <Alarm id:469@22:07:41 at 0x7f5198797dc0>,
 470: <Alarm id:470@22:07:46 at 0x7f5198797d60>}
>>> for alarm in alarms:
...     alarm
...
<Alarm id:469@22:07:41 at 0x7f5198797dc0>
<Alarm id:470@22:07:46 at 0x7f5198797d60>
>>> alarms[470]
<Alarm id:470@22:07:46 at 0x7f5198797d60>
>>> new_alarm = Alarm(zone)
>>> new_alarm.save()
471
>>> new_alarm.recurrence = "ONCE"
>>> new_alarm.save()
471
>>> alarms.alarms
{469: <Alarm id:469@22:07:41 at 0x7f5198797dc0>,
 470: <Alarm id:470@22:07:46 at 0x7f5198797d60>,
 471: <Alarm id:471@22:08:40 at 0x7f51987f1b50>}
>>> alarms[470].remove()
>>> alarms.alarms
{469: <Alarm id:469@22:07:41 at 0x7f5198797dc0>,
 471: <Alarm id:471@22:08:40 at 0x7f51987f1b50>}
>>> for alarm in alarms:
...     alarm.remove()
...
>>> a.alarms
{}





Initialize the instance.


	
last_alarm_list_version

	Return last seen alarm list version.






	
get(alarm_id)

	Return the alarm by ID or None.






	
update(zone=None)

	Update all alarms and current alarm list version.


	Raises

	SoCoException – If the ‘CurrentAlarmListVersion’ value is unexpected.
May occur if the provided zone is from a different household.














	
class soco.alarms.Alarm(zone, start_time=None, duration=None, recurrence='DAILY', enabled=True, program_uri=None, program_metadata='', play_mode='NORMAL', volume=20, include_linked_zones=False)

	A class representing a Sonos Alarm.

Alarms may be created or updated and saved to, or removed from the Sonos
system. An alarm is not automatically saved. Call save() to do that.


	Parameters

	
	zone (SoCo) – The soco instance which will play the alarm.


	start_time (datetime.time [https://docs.python.org/3/library/datetime.html#datetime.time], optional) – The alarm’s start time.
Specify hours, minutes and seconds only. Defaults to the
current time.


	duration (datetime.time [https://docs.python.org/3/library/datetime.html#datetime.time], optional) – The alarm’s duration. Specify
hours, minutes and seconds only. May be None [https://docs.python.org/3/library/constants.html#None] for unlimited
duration. Defaults to None [https://docs.python.org/3/library/constants.html#None].


	recurrence (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A string representing how
often the alarm should be triggered. Can be DAILY,
ONCE, WEEKDAYS, WEEKENDS or of the form
ON_DDDDDD where D is a number from 0-6 representing a
day of the week (Sunday is 0), e.g. ON_034 meaning Sunday,
Wednesday and Thursday. Defaults to DAILY.


	enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – True [https://docs.python.org/3/library/constants.html#True] if alarm is enabled, False [https://docs.python.org/3/library/constants.html#False]
otherwise. Defaults to True [https://docs.python.org/3/library/constants.html#True].


	program_uri (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The uri to play. If None [https://docs.python.org/3/library/constants.html#None], the
built-in Sonos chime sound will be used. Defaults to None [https://docs.python.org/3/library/constants.html#None].


	program_metadata (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The metadata associated with
‘program_uri’. Defaults to ‘’.


	play_mode (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The play mode for the alarm. Can be one
of NORMAL, SHUFFLE_NOREPEAT, SHUFFLE,
REPEAT_ALL, REPEAT_ONE, SHUFFLE_REPEAT_ONE.
Defaults to NORMAL.


	volume (int [https://docs.python.org/3/library/functions.html#int], optional) – The alarm’s volume (0-100). Defaults to 20.


	include_linked_zones (bool [https://docs.python.org/3/library/functions.html#bool], optional) – True [https://docs.python.org/3/library/constants.html#True] if the alarm should
be played on the other speakers in the same group, False [https://docs.python.org/3/library/constants.html#False]
otherwise. Defaults to False [https://docs.python.org/3/library/constants.html#False].









	
update(**kwargs)

	Update an existing Alarm instance using the same arguments as __init__.






	
play_mode

	The play mode for the alarm.

Can be one of NORMAL, SHUFFLE_NOREPEAT, SHUFFLE,
REPEAT_ALL, REPEAT_ONE, SHUFFLE_REPEAT_ONE.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
volume

	The alarm’s volume (0-100).


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
recurrence

	How often the alarm should be triggered.

Can be DAILY, ONCE, WEEKDAYS, WEEKENDS or of the form
ON_DDDDDDD where D is a number from 0-7 representing a day of
the week (Sunday is 0), e.g. ON_034 meaning Sunday, Wednesday and
Thursday.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
save()

	Save the alarm to the Sonos system.


	Returns

	The alarm ID, or None [https://docs.python.org/3/library/constants.html#None] if no alarm was saved.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]



	Raises

	SoCoUPnPException – if the alarm cannot be created
because there
is already an alarm for this room at the specified time.










	
remove()

	Remove the alarm from the Sonos system.

There is no need to call save. The Python instance is not deleted,
and can be saved back to Sonos again if desired.


	Returns

	If the removal was sucessful.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
alarm_id

	The ID of the alarm, or None [https://docs.python.org/3/library/constants.html#None].


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]














	
soco.alarms.get_alarms(zone=None)

	Get a set of all alarms known to the Sonos system.


	Parameters

	zone (soco.SoCo, optional) – a SoCo instance to query. If None, a random
instance is used. Defaults to None [https://docs.python.org/3/library/constants.html#None].



	Returns

	A set of Alarm instances



	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]










	
soco.alarms.remove_alarm_by_id(zone, alarm_id)

	Remove an alarm from the Sonos system by its ID.


	Parameters

	
	zone (SoCo) – A SoCo instance, which can be any zone that belongs
to the Sonos system in which the required alarm is defined.


	alarm_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of the alarm to be removed.






	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the alarm is found and removed, False [https://docs.python.org/3/library/constants.html#False] otherwise.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
soco.alarms.parse_alarm_payload(payload, zone)

	Parse the XML payload response and return a dict of Alarm kwargs.








          

      

      

    




  

    
      
          
            
  
soco.cache module

This module contains the classes underlying SoCo’s caching system.


	
class soco.cache._BaseCache(*args, **kwargs)

	An abstract base class for the cache.


	
enabled = None

	whether the cache is enabled


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
put(item, *args, **kwargs)

	Put an item into the cache.






	
get(*args, **kwargs)

	Get an item from the cache.






	
delete(*args, **kwargs)

	Delete an item from the cache.






	
clear()

	Empty the whole cache.










	
class soco.cache.NullCache(*args, **kwargs)

	A cache which does nothing.

Useful for debugging.


	
put(item, *args, **kwargs)

	Put an item into the cache.






	
get(*args, **kwargs)

	Get an item from the cache.






	
delete(*args, **kwargs)

	Delete an item from the cache.






	
clear()

	Empty the whole cache.










	
class soco.cache.TimedCache(default_timeout=0)

	A simple thread-safe cache for caching method return values.

The cache key is generated by from the given *args and **kwargs.
Items are expired from the cache after a given period of time.

Example

>>> from time import sleep
>>> cache = TimedCache()
>>> cache.put("item", 'some', kw='args', timeout=3)
>>> # Fetch the item again, by providing the same args and kwargs.
>>> assert cache.get('some', kw='args') == "item"
>>> # Providing different args or kwargs will not return the item.
>>> assert not cache.get('some', 'otherargs') == "item"
>>> # Waiting for less than the provided timeout does not cause the
>>> # item to expire.
>>> sleep(2)
>>> assert cache.get('some', kw='args') == "item"
>>> # But waiting for longer does.
>>> sleep(2)
>>> assert not cache.get('some', kw='args') == "item"






Warning

At present, the cache can theoretically grow and grow, since entries
are not automatically purged, though in practice this is unlikely
since there are not that many different combinations of arguments in
the places where it is used in SoCo, so not that many different
cache entries will be created. If this becomes a problem,
use a thread and timer to purge the cache, or rewrite this to use
LRU logic!




	Parameters

	
	default_timeout (int [https://docs.python.org/3/library/functions.html#int]) – The default number of seconds after


	items will be expired. (which) – 









	
default_timeout = None

	The default caching expiry interval in seconds.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
get(*args, **kwargs)

	Get an item from the cache for this combination of args and kwargs.


	Parameters

	
	*args – any arguments.


	**kwargs – any keyword arguments.






	Returns

	The object which has been found in the cache, or None [https://docs.python.org/3/library/constants.html#None] if
no unexpired item is found. This means that there is no point
storing an item in the cache if it is None [https://docs.python.org/3/library/constants.html#None].



	Return type

	object [https://docs.python.org/3/library/functions.html#object]










	
put(item, *args, **kwargs)

	Put an item into the cache, for this combination of args and kwargs.


	Parameters

	
	*args – any arguments.


	**kwargs – any keyword arguments. If timeout is specified as one
of the keyword arguments, the item will remain available
for retrieval for timeout seconds. If timeout is
None [https://docs.python.org/3/library/constants.html#None] or not specified, the default_timeout for this
cache will be used. Specify a timeout of 0 (or ensure that
the default_timeout for this cache is 0) if this item is
not to be cached.













	
delete(*args, **kwargs)

	Delete an item from the cache for this combination of args and
kwargs.






	
clear()

	Empty the whole cache.






	
static make_key(*args, **kwargs)

	Generate a unique, hashable, representation of the args and kwargs.


	Parameters

	
	*args – any arguments.


	**kwargs – any keyword arguments.






	Returns

	the key.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]














	
class soco.cache.Cache(*args, **kwargs)

	A factory class which returns an instance of a cache subclass.

A TimedCache is returned, unless config.CACHE_ENABLED is False [https://docs.python.org/3/library/constants.html#False],
in which case a NullCache will be returned.


	
clear()

	Empty the whole cache.






	
delete(*args, **kwargs)

	Delete an item from the cache.






	
get(*args, **kwargs)

	Get an item from the cache.






	
put(item, *args, **kwargs)

	Put an item into the cache.












          

      

      

    




  

    
      
          
            
  
soco.config module

This module contains configuration variables.

They may be set by your code as follows:

from soco import config
...
config.VARIABLE = value






	
soco.config.SOCO_CLASS

	alias of soco.core.SoCo






	
soco.config.CACHE_ENABLED = True

	Is the cache enabled?

If True [https://docs.python.org/3/library/constants.html#True] (the default), some caching of network requests will take place.


See also

The soco.cache module.








	
soco.config.EVENT_ADVERTISE_IP = None

	The IP on which to advertise to Sonos.

The default of None means that the relevant IP address will be detected
automatically.


See also

The soco.events_base module.








	
soco.config.EVENT_LISTENER_IP = None

	The IP on which the event listener listens.

The default of None means that the relevant IP address will be detected
automatically.


See also

The soco.events_base module.








	
soco.config.EVENT_LISTENER_PORT = 1400

	The port on which the event listener listens.

The default is 1400. You must set this before subscribing to any events.


See also

The soco.events_base module.








	
soco.config.EVENTS_MODULE = <module 'soco.events' from '/home/docs/checkouts/readthedocs.org/user_builds/soco/checkouts/v0.27.1/soco/events.py'>

	The events module to be used by the soco.services module.

The default of None means the soco.events module will be used.


See also

The soco.events and soco.events_twisted modules.








	
soco.config.REQUEST_TIMEOUT = 20.0

	The timeout (in seconds) to be used when sending commands to a Sonos device.

A value for REQUEST_TIMEOUT must be set. It can be a float, an int, or None.
If set to ‘None’, calls can potentially wait indefinitely. (The default of 20.0s
is a long time for network operations, but it’s been determined empirically to
be a reasonable upper limit for most circumstances.)

REQUEST_TIMEOUT can be set dynamically during program execution to adjust the
timeout at runtime. It can also be overridden for specific calls by using the
‘timeout’ kwarg in the relevant calling functions.








          

      

      

    




  

    
      
          
            
  
soco.core module

The core module contains the SoCo class that implements
the main entry to the SoCo functionality


	
soco.core.only_on_master(function)

	Decorator that raises SoCoSlaveException on master call on slave.






	
soco.core.only_on_soundbars(function)

	Decorator to raise an exception on soundbar property access on non-soundbars.






	
class soco.core.SoCo(ip_address)

	A simple class for controlling a Sonos speaker.

For any given set of arguments to __init__, only one instance of this class
may be created. Subsequent attempts to create an instance with the same
arguments will return the previously created instance. This means that all
SoCo instances created with the same ip address are in fact the same SoCo
instance, reflecting the real world position.

Basic Methods







	play_from_queue(index[, start])

	Play a track from the queue by index.



	play()

	Play the currently selected track.



	play_uri([uri, meta, title, start, force_radio])

	Play a URI.



	pause()

	Pause the currently playing track.



	stop()

	Stop the currently playing track.



	end_direct_control_session()

	Ends all third-party controlled streaming sessions.



	seek([position, track])

	Seek to a given position.



	next()

	Go to the next track.



	previous()

	Go back to the previously played track.



	mute

	The speaker’s mute state.



	volume

	The speaker’s volume.



	play_mode

	The queue’s play mode.



	shuffle

	The queue’s shuffle option.



	repeat

	The queue’s repeat option.



	cross_fade

	The speaker’s cross fade state.



	ramp_to_volume(volume[, ramp_type])

	Smoothly change the volume.



	set_relative_volume(relative_volume)

	Adjust the volume up or down by a relative amount.



	get_current_track_info()

	Get information about the currently playing track.



	get_current_media_info()

	Get information about the currently playing media.



	get_speaker_info([refresh, timeout])

	Get information about the Sonos speaker.



	get_current_transport_info()

	Get the current playback state.






Queue Management







	get_queue([start, max_items, full_album_art_uri])

	Get information about the queue.



	queue_size

	Size of the queue.



	add_to_queue(queueable_item[, position, as_next])

	Add a queueable item to the queue.



	add_uri_to_queue(uri[, position, as_next])

	Add the URI to the queue.



	add_multiple_to_queue(items[, container])

	Add a sequence of items to the queue.



	remove_from_queue(index)

	Remove a track from the queue by index.



	clear_queue()

	Remove all tracks from the queue.






Group Management







	group

	The Zone Group of which this device is a member.



	partymode()

	Put all the speakers in the network in the same group, a.k.a Party Mode.



	join(master)

	Join this speaker to another “master” speaker.



	unjoin()

	Remove this speaker from a group.



	all_groups

	All available groups.



	all_zones

	All available zones.



	visible_zones

	All visible zones.






Player Identity and Settings







	player_name

	The speaker’s name.



	uid

	A unique identifier.



	household_id

	A unique identifier for all players in a household.



	is_visible

	Is this zone visible?



	is_bridge

	Is this zone a bridge?



	is_coordinator

	Is this zone a group coordinator?



	is_soundbar

	Is this zone a soundbar (i.e.



	is_satellite

	Is this zone a satellite in a home theater setup?



	has_satellites

	Is this zone configured with satellites in a home theater setup?



	sub_enabled

	Reports if the subwoofer is enabled.



	sub_gain

	The current subwoofer gain level.



	is_subwoofer

	Is this zone a subwoofer?



	has_subwoofer

	Is this zone configured with a subwoofer?



	channel

	Location of this zone in a home theater or paired configuration.



	bass

	The speaker’s bass EQ.



	treble

	The speaker’s treble EQ.



	loudness

	The speaker’s loudness compensation.



	balance

	The left/right balance for the speaker(s).



	audio_delay

	The TV Dialog Sync audio delay.



	night_mode

	The speaker’s night mode.



	dialog_mode

	The speaker’s dialog mode.



	surround_enabled

	Reports if the home theater surround speakers are enabled.



	surround_full_volume_enabled

	Return True if surround full volume is enabled for surround music playback.



	surround_volume_tv

	Get the relative volume for surround speakers in TV playback mode.



	surround_volume_music

	Return the relative volume for surround speakers in music mode, in the range -15 to +15.



	soundbar_audio_input_format

	Return a string presentation of the audio input format.



	supports_fixed_volume

	Whether the device supports fixed volume output.



	fixed_volume

	The device’s fixed volume output setting.



	soundbar_audio_input_format

	Return a string presentation of the audio input format.



	soundbar_audio_input_format_code

	Return audio input format code as reported by the device.



	trueplay

	Whether Trueplay is enabled on this device.



	status_light

	The white Sonos status light between the mute button and the volume up button on the speaker.



	buttons_enabled

	Whether the control buttons on the device are enabled.



	voice_service_configured

	Is a voice service configured on this device?



	mic_enabled

	Is the device’s microphone enabled?






Playlists and Favorites







	get_sonos_playlists(*args, **kwargs)

	Convenience method for calling soco.music_library.get_music_library_information('sonos_playlists')



	create_sonos_playlist(title)

	Create a new empty Sonos playlist.



	create_sonos_playlist_from_queue(title)

	Create a new Sonos playlist from the current queue.



	remove_sonos_playlist(sonos_playlist)

	Remove a Sonos playlist.



	add_item_to_sonos_playlist(queueable_item, …)

	Adds a queueable item to a Sonos’ playlist.



	reorder_sonos_playlist(sonos_playlist, …)

	Reorder and/or Remove tracks in a Sonos playlist.



	clear_sonos_playlist(sonos_playlist[, update_id])

	Clear all tracks from a Sonos playlist.



	move_in_sonos_playlist(sonos_playlist, …)

	Move a track to a new position within a Sonos Playlist.



	remove_from_sonos_playlist(sonos_playlist, track)

	Remove a track from a Sonos Playlist.



	get_sonos_playlist_by_attr(attr_name, match)

	Return the first Sonos Playlist DidlPlaylistContainer that matches the attribute specified.



	get_favorite_radio_shows([start, max_items])

	Get favorite radio shows from Sonos’ Radio app.



	get_favorite_radio_stations([start, max_items])

	Get favorite radio stations from Sonos’ Radio app.



	get_sonos_favorites([start, max_items])

	Get Sonos favorites.






Miscellaneous







	music_source

	The current music source (radio, TV, line-in, etc.).



	music_source_from_uri(uri)

	Determine a music source from a URI.



	is_playing_radio

	Is the speaker playing radio?



	is_playing_tv

	Is the playbar speaker input from TV?



	is_playing_line_in

	Is the speaker playing line-in?



	switch_to_line_in([source])

	Switch the speaker’s input to line-in.



	switch_to_tv()

	Switch the playbar speaker’s input to TV.



	available_actions

	The transport actions that are currently available on the speaker.



	set_sleep_timer(sleep_time_seconds)

	Sets the sleep timer.



	get_sleep_timer()

	Retrieves remaining sleep time, if any



	create_stereo_pair(rh_slave_speaker)

	Create a stereo pair.



	separate_stereo_pair()

	Separate a stereo pair.



	get_battery_info([timeout])

	Get battery information for a Sonos speaker.



	boot_seqnum

	The boot sequence number.







Warning

Properties on this object are not generally cached and may obtain
information over the network, so may take longer than expected to set
or return a value. It may be a good idea for you to cache the value in
your own code.




Note

Since all methods/properties on this object will result in an UPnP
request, they might result in an exception without it being mentioned
in the Raises section.

In most cases, the exception will be a
soco.exceptions.SoCoUPnPException
(if the player returns an UPnP error code), but in special cases
it might also be another soco.exceptions.SoCoException
or even a requests [https://docs.python-requests.org/en/master/api/#module-requests] exception.




	
ip_address = None

	The speaker’s ip address






	
boot_seqnum

	The boot sequence number.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
player_name

	The speaker’s name.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
uid

	A unique identifier.

Looks like: 'RINCON_000XXXXXXXXXX1400'


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
household_id

	A unique identifier for all players in a household.

Looks like: 'Sonos_asahHKgjgJGjgjGjggjJgjJG34'


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
is_visible

	Is this zone visible?

A zone might be invisible if, for example, it is a bridge, or the slave
part of stereo pair.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
is_bridge

	Is this zone a bridge?


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
is_coordinator

	Is this zone a group coordinator?


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
is_satellite

	Is this zone a satellite in a home theater setup?


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
has_satellites

	Is this zone configured with satellites in a home theater setup?

Will only return True on the primary device in a home theater configuration.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
is_subwoofer

	Is this zone a subwoofer?


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
has_subwoofer

	Is this zone configured with a subwoofer?

Only provides reliable results when called on the soundbar
or subwoofer devices if configured in a home theater setup.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
channel

	Location of this zone in a home theater or paired configuration.

Can be one of “LF,RF”, “LF”, “RF”, “LR”, “RR”, “SW”, or None.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
is_soundbar

	Is this zone a soundbar (i.e. has night mode etc.)?


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
play_mode

	The queue’s play mode.

Case-insensitive options are:


	'NORMAL' – Turns off shuffle and repeat.


	'REPEAT_ALL' – Turns on repeat and turns off shuffle.


	'SHUFFLE' – Turns on shuffle and repeat. (It’s
strange, I know.)


	'SHUFFLE_NOREPEAT' – Turns on shuffle and turns off
repeat.


	'REPEAT_ONE' – Turns on repeat one and turns off shuffle.


	'SHUFFLE_REPEAT_ONE' – Turns on shuffle and repeat one. (It’s
strange, I know.)





	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
shuffle

	The queue’s shuffle option.

True if enabled, False otherwise.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
repeat

	The queue’s repeat option.

True if enabled, False otherwise.

Can also be the string 'ONE' for play mode
'REPEAT_ONE'.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
cross_fade

	The speaker’s cross fade state.

True if enabled, False otherwise


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
ramp_to_volume(volume, ramp_type='SLEEP_TIMER_RAMP_TYPE')

	Smoothly change the volume.

There are three ramp types available:



	'SLEEP_TIMER_RAMP_TYPE' (default): Linear ramp from the
current volume up or down to the new volume. The ramp rate is
1.25 steps per second. For example: To change from volume 50 to
volume 30 would take 16 seconds.


	'ALARM_RAMP_TYPE': Resets the volume to zero, waits for about
30 seconds, and then ramps the volume up to the desired value at
a rate of 2.5 steps per second. For example: Volume 30 would take
12 seconds for the ramp up (not considering the wait time).


	'AUTOPLAY_RAMP_TYPE': Resets the volume to zero and then
quickly ramps up at a rate of 50 steps per second. For example:
Volume 30 will take only 0.6 seconds.







The ramp rate is selected by Sonos based on the chosen ramp type and
the resulting transition time returned.
This method is non blocking and has no network overhead once sent.


	Parameters

	
	volume (int [https://docs.python.org/3/library/functions.html#int]) – The new volume.


	ramp_type (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The desired ramp type, as described
above.






	Returns

	The ramp time in seconds, rounded down. Note that this does
not include the wait time.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]










	
set_relative_volume(relative_volume)

	Adjust the volume up or down by a relative amount.

If the adjustment causes the volume to overshoot the maximum value
of 100, the volume will be set to 100. If the adjustment causes the
volume to undershoot the minimum value of 0, the volume will be set
to 0.

Note that this method is an alternative to using addition and
subtraction assignment operators (+=, -=) on the volume property
of a SoCo instance. These operators perform the same function as
set_relative_volume but require two network calls per operation
instead of one.


	Parameters

	relative_volume (int [https://docs.python.org/3/library/functions.html#int]) – The relative volume adjustment. Can be
positive or negative.



	Returns

	The new volume setting.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]



	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If relative_volume cannot be cast as an integer.










	
play_from_queue(index, start=True)

	Play a track from the queue by index.

The index number is required as an argument, where the first index
is 0.


	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – 0-based index of the track to play


	start (bool [https://docs.python.org/3/library/functions.html#bool]) – If the item that has been set should start playing













	
play()

	Play the currently selected track.






	
play_uri(uri='', meta='', title='', start=True, force_radio=False)

	Play a URI.

Playing a URI will replace what was playing with the stream
given by the URI. For some streams at least a title is
required as metadata.  This can be provided using the meta
argument or the title argument.  If the title argument
is provided minimal metadata will be generated.  If meta
argument is provided the title argument is ignored.


	Parameters

	
	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – URI of the stream to be played.


	meta (str [https://docs.python.org/3/library/stdtypes.html#str]) – The metadata to show in the player, DIDL format.


	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – The title to show in the player (if no meta).


	start (bool [https://docs.python.org/3/library/functions.html#bool]) – If the URI that has been set should start playing.


	force_radio (bool [https://docs.python.org/3/library/functions.html#bool]) – forces a uri to play as a radio stream.








On a Sonos controller music is shown with one of the following display
formats and controls:


	Radio format: Shows the name of the radio station and other available
data. No seek, next, previous, or voting capability.
Examples: TuneIn, radioPup


	Smart Radio:  Shows track name, artist, and album. Limited seek, next
and sometimes voting capability depending on the Music Service.
Examples: Amazon Prime Stations, Pandora Radio Stations.


	Track format: Shows track name, artist, and album the same as when
playing from a queue. Full seek, next and previous capabilities.
Examples: Spotify, Napster, Rhapsody.




How it is displayed is determined by the URI prefix:
x-sonosapi-stream:, x-sonosapi-radio:,
x-rincon-mp3radio:, hls-radio: default to radio or
smart radio format depending on the stream. Others default to
track format: x-file-cifs:, aac:, http:,
https:, x-sonos-spotify: (used by Spotify),
x-sonosapi-hls-static: (Amazon Prime), x-sonos-http:
(Google Play & Napster).

Some URIs that default to track format could be radio streams,
typically http:, https: or aac:.  To force display
and controls to Radio format set force_radio=True


Note

Other URI prefixes exist but are less common.
If you have information on these please add to this doc string.




Note

A change in Sonos® (as of at least version 6.4.2)
means that the devices no longer accepts ordinary http:
and https: URIs for radio stations. This method has the
option to replaces these prefixes with the one that Sonos®
expects: x-rincon-mp3radio: by using the
“force_radio=True” parameter.  A few streams may fail if
not forced to to Radio format.








	
pause()

	Pause the currently playing track.






	
stop()

	Stop the currently playing track.






	
end_direct_control_session()

	Ends all third-party controlled streaming sessions.






	
seek(position=None, track=None)

	Seek to a given position.

You can seek both a relative position in the current track and a track
number in the queue.
It is even possible to seek to a tuple or dict containing the absolute
position (relative pos. and track nr.):

t = ('0:00:00', 0)
player.seek(*t)
d = {'position': '0:00:00', 'track': 0}
player.seek(**d)






	Parameters

	
	position (str [https://docs.python.org/3/library/stdtypes.html#str]) – The desired timestamp in the current track,
specified in the format of HH:MM:SS or H:MM:SS


	track (int [https://docs.python.org/3/library/functions.html#int]) – The (zero-based) track index in the queue






	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If neither position nor track are specified.


	SoCoUPnPException – UPnP Error 701 if seeking is not supported,
UPnP Error 711 if the target is invalid.









Note

The ‘track’ parameter can only be used if the queue is currently
playing. If not, use play_from_queue().



This is currently faster than play_from_queue() if already
using the queue, as it does not reinstate the queue.

If speaker is already playing it will continue to play after
seek. If paused it will remain paused.






	
next()

	Go to the next track.

Keep in mind that next() can return errors
for a variety of reasons. For example, if the Sonos is streaming
Pandora and you call next() several times in quick succession an error
code will likely be returned (since Pandora has limits on how many
songs can be skipped).






	
previous()

	Go back to the previously played track.

Keep in mind that previous() can return errors
for a variety of reasons. For example, previous() will return an error
code (error code 701) if the Sonos is streaming Pandora since you can’t
go back on tracks.






	
mute

	The speaker’s mute state.

True if muted, False otherwise.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
volume

	The speaker’s volume.

An integer between 0 and 100.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
bass

	The speaker’s bass EQ.

An integer between -10 and 10.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
treble

	The speaker’s treble EQ.

An integer between -10 and 10.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
loudness

	The speaker’s loudness compensation.

True if on, False otherwise.

Loudness is a complicated topic. You can read about it on
Wikipedia: https://en.wikipedia.org/wiki/Loudness


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
surround_enabled

	Reports if the home theater surround speakers are enabled.

Should only be called on the primary device in a home theater setup.

True if on, False if off, None if not supported.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
sub_enabled

	Reports if the subwoofer is enabled.

True if on, False if off, None if not supported.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
sub_gain

	The current subwoofer gain level.

Returns the current value or None if not supported.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
balance

	The left/right balance for the speaker(s).


	Returns

	A 2-tuple (left_channel, right_channel) of integers
between 0 and 100, representing the volume of each channel.
E.g., (100, 100) represents full volume to both channels,
whereas (100, 0) represents left channel at full volume,
right channel at zero volume.



	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]










	
audio_delay

	The TV Dialog Sync audio delay.

Returns the current value or None if not supported.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
night_mode

	The speaker’s night mode.

True if on, False if off, None if not supported.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
dialog_mode

	The speaker’s dialog mode.

True if on, False if off, None if not supported.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
surround_full_volume_enabled

	Return True if surround full volume is enabled for surround music
playback.

If False, playback on surround speakers uses ambient volume.

Note: does not apply to TV playback.






	
surround_volume_tv

	Get the relative volume for surround speakers in TV
playback mode. Ranges from -15 to +15.






	
surround_volume_music

	Return the relative volume for surround speakers in music mode,
in the range -15 to +15.






	
dialog_level

	Convenience wrapper for dialog_mode getter to match raw Sonos API.






	
trueplay

	Whether Trueplay is enabled on this device.
True if on, False if off.

Devices that do not support Trueplay, or which do not have
a current Trueplay calibration, will return None [https://docs.python.org/3/library/constants.html#None] on getting
the property, and  raise a NotSupportedException when
setting the property.

Can only be set on visible devices. Attempting to set on non-visible
devices will raise a SoCoNotVisibleException.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
soundbar_audio_input_format_code

	Return audio input format code as reported by the device.

Returns None when the device is not a soundbar.

While the variable is available on non-soundbar devices,
it is likely always 0 for devices without audio inputs.

See also soundbar_audio_input_format() for obtaining a
human-readable description of the format.






	
soundbar_audio_input_format

	Return a string presentation of the audio input format.

Returns None when the device is not a soundbar.
Otherwise, this will return the string presentation of the currently
active sound format (e.g., “Dolby 5.1” or “No input”)

See also soundbar_audio_input_format_code() for the raw value.






	
supports_fixed_volume

	Whether the device supports fixed volume output.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
fixed_volume

	The device’s fixed volume output setting.

True if on, False if off. Only applicable to certain
Sonos devices (Connect and Port at the time of writing).
All other devices always return False.

Attempting to set this property for a non-applicable
device will raise a NotSupportedException.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
all_groups

	All available groups.


	Type

	set of soco.groups.ZoneGroup










	
group

	The Zone Group of which this device
is a member.

None if this zone is a slave in a stereo pair.


	Type

	soco.groups.ZoneGroup










	
all_zones

	All available zones.


	Type

	set of soco.groups.ZoneGroup










	
visible_zones

	All visible zones.


	Type

	set of soco.groups.ZoneGroup










	
clear_zone_groups()

	Clear all known group sets for this zone.






	
partymode()

	Put all the speakers in the network in the same group, a.k.a Party
Mode.

This blog shows the initial research responsible for this:
http://blog.travelmarx.com/2010/06/exploring-sonos-via-upnp.html

The trick seems to be (only tested on a two-speaker setup) to tell each
speaker which to join. There’s probably a bit more to it if multiple
groups have been defined.






	
join(master)

	Join this speaker to another “master” speaker.






	
unjoin()

	Remove this speaker from a group.

Seems to work ok even if you remove what was previously the group
master from it’s own group. If the speaker was not in a group also
returns ok.






	
create_stereo_pair(rh_slave_speaker)

	Create a stereo pair.

This speaker becomes the master, left-hand speaker of the stereo
pair. The rh_slave_speaker becomes the right-hand speaker.
Note that this operation will succeed on dissimilar speakers, unlike
when using the official Sonos apps.


	Parameters

	rh_slave_speaker (SoCo) – The speaker that will be added as
the right-hand, slave speaker of the stereo pair.



	Raises

	SoCoUPnPException – if either speaker is already part of a
stereo pair.










	
separate_stereo_pair()

	Separate a stereo pair.

This can be called on either the master (left-hand) speaker, or on the
slave (right-hand) speaker, to create two independent zones.


	Raises

	SoCoUPnPException – if the speaker is not a member of a stereo pair.










	
switch_to_line_in(source=None)

	Switch the speaker’s input to line-in.


	Parameters

	source (SoCo) – The speaker whose line-in should be played.
Default is line-in from the speaker itself.










	
is_playing_radio

	Is the speaker playing radio?


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
is_playing_line_in

	Is the speaker playing line-in?


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
is_playing_tv

	Is the playbar speaker input from TV?


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
static music_source_from_uri(uri)

	Determine a music source from a URI.


	Parameters

	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – The URI representing the music source



	Returns

	The current source of music.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]





Possible return values are:


	'NONE' – speaker has no music to play.


	'LIBRARY' – speaker is playing queued titles from the music
library.


	'RADIO' – speaker is playing radio.


	'WEB_FILE' – speaker is playing a music file via http/https.


	'LINE_IN' – speaker is playing music from line-in.


	'TV' – speaker is playing input from TV.


	'AIRPLAY' – speaker is playing from AirPlay.


	'UNKNOWN' – any other input.




The strings above can be imported as MUSIC_SRC_LIBRARY,
MUSIC_SRC_RADIO, etc.






	
music_source

	The current music source (radio, TV, line-in, etc.).

Possible return values are the same as used in music_source_from_uri().


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
switch_to_tv()

	Switch the playbar speaker’s input to TV.






	
status_light

	The white Sonos status light between the mute button and the
volume up button on the speaker.

True if on, otherwise False.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
buttons_enabled

	Whether the control buttons on the device are enabled.

True [https://docs.python.org/3/library/constants.html#True] if the control buttons are enabled, False [https://docs.python.org/3/library/constants.html#False] if disabled.

This property can only be set on visible speakers, and will enable
or disable the buttons for all speakers in any bonded set (e.g., a
stereo pair). Attempting to set it on invisible speakers
(e.g., the RH speaker of a stereo pair) will raise a
SoCoNotVisibleException.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
voice_service_configured

	Is a voice service configured on this device?


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
mic_enabled

	Is the device’s microphone enabled?


Note

Returns None if the device does not have a microphone
or if a voice service is not configured.




	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
get_current_track_info()

	Get information about the currently playing track.


	Returns

	A dictionary containing information about the currently
playing track: playlist_position, duration, title, artist, album,
position and an album_art link.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]





If we’re unable to return data for a field, we’ll return an empty
string. This can happen for all kinds of reasons so be sure to check
values. For example, a track may not have complete metadata and be
missing an album name. In this case track[‘album’] will be an empty
string.


Note

Calling this method on a slave in a group will not
return the track the group is playing, but the last track
this speaker was playing.








	
get_current_media_info()

	Get information about the currently playing media.


	Returns

	A dictionary containing information about the currently
playing media: uri, channel.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]





If we’re unable to return data for a field, we’ll return an empty
string.






	
get_speaker_info(refresh=False, timeout=None)

	Get information about the Sonos speaker.


	Parameters

	
	refresh (bool [https://docs.python.org/3/library/functions.html#bool]) – Refresh the speaker info cache.


	timeout – How long to wait for the server to send
data before giving up, as a float, or a
(connect timeout, read timeout) tuple
e.g. (3, 5). Default is no timeout.






	Returns

	Information about the Sonos speaker, such as the UID,
MAC Address, and Zone Name.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
get_current_transport_info()

	Get the current playback state.


	Returns

	The following information about the
speaker’s playing state:


	current_transport_state (PLAYING, TRANSITIONING,
PAUSED_PLAYBACK, STOPPED)


	current_transport_status (OK, ?)


	current_speed(1, ?)








	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]





This allows us to know if speaker is playing or not. Don’t know other
states of CurrentTransportStatus and CurrentSpeed.






	
available_actions

	The transport actions that are currently available on the
speaker.


	Returns

	list: A list of strings representing the available actions, such as
[‘Set’, ‘Stop’, ‘Play’].





Possible list items are: ‘Set’, ‘Stop’, ‘Pause’, ‘Play’,
‘Next’, ‘Previous’, ‘SeekTime’, ‘SeekTrackNr’.






	
get_queue(start=0, max_items=100, full_album_art_uri=False)

	Get information about the queue.


	Parameters

	
	start – Starting number of returned matches


	max_items – Maximum number of returned matches


	full_album_art_uri – If the album art URI should include the
IP address






	Returns

	A Queue object





This method is heavily based on Sam Soffes (aka soffes) ruby
implementation






	
queue_size

	Size of the queue.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
get_sonos_playlists(*args, **kwargs)

	Convenience method for calling
soco.music_library.get_music_library_information('sonos_playlists')

Refer to the docstring for that method: get_music_library_information






	
add_uri_to_queue(uri, position=0, as_next=False)

	Add the URI to the queue.

For arguments and return value see add_to_queue.






	
add_to_queue(queueable_item, position=0, as_next=False)

	Add a queueable item to the queue.


	Parameters

	
	queueable_item (DidlObject or MusicServiceItem) – The item to be
added to the queue


	position (int [https://docs.python.org/3/library/functions.html#int]) – The index (1-based) at which the URI should be
added. Default is 0 (add URI at the end of the queue).


	as_next (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether this URI should be played as the next
track in shuffle mode. This only works if play_mode=SHUFFLE.






	Returns

	The index of the new item in the queue.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]










	
add_multiple_to_queue(items, container=None)

	Add a sequence of items to the queue.


	Parameters

	
	items (list [https://docs.python.org/3/library/stdtypes.html#list]) – A sequence of items to the be added to the queue


	container (DidlObject, optional) – A container object which
includes the items.













	
remove_from_queue(index)

	Remove a track from the queue by index. The index number is
required as an argument, where the first index is 0.


	Parameters

	index (int [https://docs.python.org/3/library/functions.html#int]) – The (0-based) index of the track to remove










	
clear_queue()

	Remove all tracks from the queue.






	
get_favorite_radio_shows(start=0, max_items=100)

	Get favorite radio shows from Sonos’ Radio app.



	Returns:

	dict: A dictionary containing the total number of favorites, the
number of favorites returned, and the actual list of favorite radio
shows, represented as a dictionary with 'title' and 'uri'
keys.





Depending on what you’re building, you’ll want to check to see if the
total number of favorites is greater than the amount you
requested (max_items), if it is, use start to page through and
get the entire list of favorites.





Deprecated since version 0.13: Will be removed in version 0.15.
Use soco.music_library.get_favorite_radio_shows instead.








	
get_favorite_radio_stations(start=0, max_items=100)

	Get favorite radio stations from Sonos’ Radio app.


See get_favorite_radio_shows() for return type and remarks.





Deprecated since version 0.13: Will be removed in version 0.15.
Use soco.music_library.get_favorite_radio_stations instead.








	
get_sonos_favorites(start=0, max_items=100)

	Get Sonos favorites.


See get_favorite_radio_shows() for return type and remarks.





Deprecated since version 0.13: Will be removed in version 0.15.
Use soco.music_library.get_sonos_favorites instead.








	
create_sonos_playlist(title)

	Create a new empty Sonos playlist.


	Parameters

	title – Name of the playlist



	Return type

	DidlPlaylistContainer










	
create_sonos_playlist_from_queue(title)

	Create a new Sonos playlist from the current queue.


	Parameters

	title – Name of the playlist



	Return type

	DidlPlaylistContainer










	
remove_sonos_playlist(sonos_playlist)

	Remove a Sonos playlist.


	Parameters

	sonos_playlist (DidlPlaylistContainer) – Sonos playlist to remove
or the item_id (str).



	Returns

	True if succesful, False otherwise



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]



	Raises

	SoCoUPnPException – If sonos_playlist does not point to a valid
object.










	
add_item_to_sonos_playlist(queueable_item, sonos_playlist)

	Adds a queueable item to a Sonos’ playlist.


	Parameters

	
	queueable_item (DidlObject) – the item to add to the Sonos’ playlist


	sonos_playlist (DidlPlaylistContainer) – the Sonos’ playlist to
which the item should be added













	
set_sleep_timer(sleep_time_seconds)

	Sets the sleep timer.


	Parameters

	sleep_time_seconds (int [https://docs.python.org/3/library/functions.html#int] or NoneType) – How long to wait before
turning off speaker in seconds, None to cancel a sleep timer.
Maximum value of 86399



	Raises

	
	SoCoException – Upon errors interacting with Sonos controller


	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Argument/Syntax errors













	
get_sleep_timer()

	Retrieves remaining sleep time, if any


	Returns

	
	Number of seconds left in timer. If there is no

	sleep timer currently set it will return None.









	Return type

	int [https://docs.python.org/3/library/functions.html#int] or NoneType










	
reorder_sonos_playlist(sonos_playlist, tracks, new_pos, update_id=0)

	Reorder and/or Remove tracks in a Sonos playlist.

The underlying call is quite complex as it can both move a track
within the list or delete a track from the playlist.  All of this
depends on what tracks and new_pos specify.

If a list is specified for tracks, then a list must be used for
new_pos. Each list element is a discrete modification and the next
list operation must anticipate the new state of the playlist.

If a comma formatted string to tracks is specified, then use
a similiar string to specify new_pos. Those operations should be
ordered from the end of the list to the beginning

See the helper methods
clear_sonos_playlist(), move_in_sonos_playlist(),
remove_from_sonos_playlist() for simplified usage.

update_id - If you have a series of operations, tracking the update_id
and setting it, will save a lookup operation.

Examples

To reorder the first two tracks:

# sonos_playlist specified by the DidlPlaylistContainer object
sonos_playlist = device.get_sonos_playlists()[0]
device.reorder_sonos_playlist(sonos_playlist,
                              tracks=[0, ], new_pos=[1, ])
# OR specified by the item_id
device.reorder_sonos_playlist('SQ:0', tracks=[0, ], new_pos=[1, ])





To delete the second track:

# tracks/new_pos are a list of int
device.reorder_sonos_playlist(sonos_playlist,
                              tracks=[1, ], new_pos=[None, ])
# OR tracks/new_pos are a list of int-like
device.reorder_sonos_playlist(sonos_playlist,
                              tracks=['1', ], new_pos=['', ])
# OR tracks/new_pos are strings - no transform is done
device.reorder_sonos_playlist(sonos_playlist, tracks='1',
                              new_pos='')





To reverse the order of a playlist with 4 items:

device.reorder_sonos_playlist(sonos_playlist, tracks='3,2,1,0',
                              new_pos='0,1,2,3')






	Parameters

	
	sonos_playlist – (DidlPlaylistContainer): The
Sonos playlist object or the item_id (str) of the Sonos
playlist.


	tracks – (list): list of track indices(int) to reorder. May also be
a list of int like things. i.e. ['0', '1',] OR it may be a
str of comma separated int like things. "0,1".  Tracks are
0-based. Meaning the first track is track 0, just like
indexing into a Python list.


	new_pos (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of new positions (int|None)
corresponding to track_list. MUST be the same type as
tracks. 0-based, see tracks above. None is the
indicator to remove the track. If using a list of strings,
then a remove is indicated by an empty string.


	update_id (int [https://docs.python.org/3/library/functions.html#int]) – operation id (default: 0) If set to 0, a lookup
is done to find the correct value.






	Returns

	Which contains 3 elements: change, length and update_id.
Change in size between original playlist and the resulting
playlist, the length of resulting playlist, and the new
update_id.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Raises

	SoCoUPnPException – If playlist does not exist or if your tracks
and/or new_pos arguments are invalid.










	
clear_sonos_playlist(sonos_playlist, update_id=0)

	Clear all tracks from a Sonos playlist.
This is a convenience method for reorder_sonos_playlist().

Example:

device.clear_sonos_playlist(sonos_playlist)






	Parameters

	
	sonos_playlist – (DidlPlaylistContainer):
Sonos playlist object or the item_id (str) of the Sonos
playlist.


	update_id (int [https://docs.python.org/3/library/functions.html#int]) – Optional update counter for the object. If left
at the default of 0, it will be looked up.






	Returns

	See reorder_sonos_playlist()



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If sonos_playlist specified by string and is not found.


	SoCoUPnPException – See reorder_sonos_playlist()













	
move_in_sonos_playlist(sonos_playlist, track, new_pos, update_id=0)

	Move a track to a new position within a Sonos Playlist.
This is a convenience method for reorder_sonos_playlist().

Example:

device.move_in_sonos_playlist(sonos_playlist, track=0, new_pos=1)






	Parameters

	
	sonos_playlist – (DidlPlaylistContainer):
Sonos playlist object or the item_id (str) of the Sonos
playlist.


	track (int [https://docs.python.org/3/library/functions.html#int]) – 0-based position of the track to move. The first
track is track 0, just like indexing into a Python list.


	new_pos (int [https://docs.python.org/3/library/functions.html#int]) – 0-based location to move the track.


	update_id (int [https://docs.python.org/3/library/functions.html#int]) – Optional update counter for the object. If left
at the default of 0, it will be looked up.






	Returns

	See reorder_sonos_playlist()



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Raises

	SoCoUPnPException – See reorder_sonos_playlist()










	
remove_from_sonos_playlist(sonos_playlist, track, update_id=0)

	Remove a track from a Sonos Playlist.
This is a convenience method for reorder_sonos_playlist().

Example:

device.remove_from_sonos_playlist(sonos_playlist, track=0)






	Parameters

	
	sonos_playlist – (DidlPlaylistContainer):
Sonos playlist object or the item_id (str) of the Sonos
playlist.


	track (int [https://docs.python.org/3/library/functions.html#int]) – 0*-based position of the track to move. The first
track is track 0, just like indexing into a Python list.


	update_id (int [https://docs.python.org/3/library/functions.html#int]) – Optional update counter for the object. If left
at the default of 0, it will be looked up.






	Returns

	See reorder_sonos_playlist()



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Raises

	SoCoUPnPException – See reorder_sonos_playlist()










	
get_sonos_playlist_by_attr(attr_name, match)

	Return the first Sonos Playlist DidlPlaylistContainer that
matches the attribute specified.


	Parameters

	
	attr_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – DidlPlaylistContainer attribute to compare. The
most useful being: ‘title’ and ‘item_id’.


	match (str [https://docs.python.org/3/library/stdtypes.html#str]) – Value to match.






	Returns

	
	The

	first matching playlist object.









	Return type

	(DidlPlaylistContainer)



	Raises

	
	(AttributeError) – If indicated attribute name does not exist.


	(ValueError) – If a match can not be found.








Example:

device.get_sonos_playlist_by_attr('title', 'Foo')
device.get_sonos_playlist_by_attr('item_id', 'SQ:3')










	
get_battery_info(timeout=3.0)

	Get battery information for a Sonos speaker.

Obtains battery information for Sonos speakers that report it. This only
applies to Sonos Move speakers at the time of writing.

This method may only work on Sonos ‘S2’ systems.


	Parameters

	timeout (float [https://docs.python.org/3/library/functions.html#float], optional) – The timeout to use when making the
HTTP request.



	Returns

	A dict [https://docs.python.org/3/library/stdtypes.html#dict] containing battery status data.

Example return value:

{'Health': 'GREEN',
 'Level': 100,
 'Temperature': 'NORMAL',
 'PowerSource': 'SONOS_CHARGING_RING'}









	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Raises

	
	NotSupportedException – If the speaker does not report battery
information.


	ConnectionError [https://docs.python.org/3/library/exceptions.html#ConnectionError] – If the HTTP connection failed, or returned an
unsuccessful status code.


	TimeoutError [https://docs.python.org/3/library/exceptions.html#TimeoutError] – If making the HTTP connection, or reading the
response, timed out.



















          

      

      

    




  

    
      
          
            
  
soco.data_structures module

This module contains classes for handling DIDL-Lite metadata.

DIDL [http://xml.coverpages.org/mpeg21-didl.html] is the Digital Item Declaration Language , an XML schema which is
part of MPEG21. DIDL-Lite [http://www.upnp.org/schemas/av/didl-lite-v2.xsd] is a cut-down version of the schema which is part
of the UPnP ContentDirectory specification. It is the XML schema used by Sonos
for carrying metadata representing many items such as tracks, playlists,
composers, albums etc. Although Sonos uses
ContentDirectory v1, the document for v2 [pdf] is more
helpful.


	
soco.data_structures.to_didl_string(*args)

	Convert any number of DidlObjects to a unicode xml
string.


	Parameters

	*args (DidlObject) – One or more DidlObject (or subclass) instances.



	Returns

	A unicode string representation of DIDL-Lite XML in the form
'<DIDL-Lite ...>...</DIDL-Lite>'.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
soco.data_structures.didl_class_to_soco_class(didl_class)

	Translate a DIDL-Lite class to the corresponding SoCo data structures class






	
soco.data_structures.form_name(didl_class)

	Return an improvised name for vendor extended classes






	
class soco.data_structures.DidlResource(uri, protocol_info, import_uri=None, size=None, duration=None, bitrate=None, sample_frequency=None, bits_per_sample=None, nr_audio_channels=None, resolution=None, color_depth=None, protection=None)

	Identifies a resource, typically some type of a binary asset, such as a
song.

It is represented in XML by a <res> element, which contains a uri that
identifies the resource.


	Parameters

	
	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – value of the <res> tag, typically a URI. It
must be properly escaped (percent encoded) as
described in RFC 3986 [https://tools.ietf.org/html/rfc3986.html]


	protocol_info (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string in the form a:b:c:d that
identifies the streaming or transport protocol for
transmitting the resource. A value is required. For more
information see section 2.5.2 of the UPnP specification [
pdf] [http://upnp.org/specs/av/UPnP-av-ConnectionManager-v1-Service.pdf]


	import_uri (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – uri locator for resource update.


	size (int [https://docs.python.org/3/library/functions.html#int], optional) – size in bytes.


	duration (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – duration of the playback of the res
at normal speed (H*:MM:SS:F* or H*:MM:SS:F0/F1)


	bitrate (int [https://docs.python.org/3/library/functions.html#int], optional) – bitrate in bytes/second.


	sample_frequency (int [https://docs.python.org/3/library/functions.html#int], optional) – sample frequency in Hz.


	bits_per_sample (int [https://docs.python.org/3/library/functions.html#int], optional) – bits per sample.


	nr_audio_channels (int [https://docs.python.org/3/library/functions.html#int], optional) – number of audio channels.


	resolution (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – resolution of the resource (X*Y).


	color_depth (int [https://docs.python.org/3/library/functions.html#int], optional) – color depth in bits.


	protection (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – statement of protection type.









Note

Not all of the parameters are used by Sonos. In general, only
uri, protocol_info and duration seem to be important.




	
uri = None

	a percent encoded URI


	Type

	(str [https://docs.python.org/3/library/stdtypes.html#str])










	
protocol_info = None

	protocol information.


	Type

	(str [https://docs.python.org/3/library/stdtypes.html#str])










	
duration = None

	playback duration


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
classmethod from_element(element)

	Set the resource properties from a <res> element.


	Parameters

	element (Element [https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element]) – The <res>
element










	
to_element()

	Return an ElementTree Element based on this resource.


	Returns

	an Element.



	Return type

	Element [https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element]










	
to_dict(remove_nones=False)

	Return a dict representation of the DidlResource.


	Parameters

	remove_nones (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Optionally remove dictionary
elements when their value is None [https://docs.python.org/3/library/constants.html#None].



	Returns

	a dict representing the DidlResource



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
classmethod from_dict(content)

	Create an instance from a dict.

An alternative constructor. Equivalent to DidlResource(**content).


	Parameters

	content (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dict containing metadata information. Required.
Valid keys are the same as the parameters for
DidlResource.














	
class soco.data_structures.DidlMetaClass

	Meta class for all Didl objects.

Create a new instance.


	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the class.


	bases (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Base classes.


	attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – attributes defined for the class.













	
class soco.data_structures.DidlObject(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Abstract base class for all DIDL-Lite items.

You should not need to instantiate this. Its XML representation looks
like this:

<DIDL-Lite xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:r="urn:schemas-rinconnetworks-com:metadata-1-0/"
 xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/">
  <item id="...self.item_id..." parentID="...cls.parent_id..."
    restricted="true">
    <dc:title>...self.title...</dc:title>
    <upnp:class>...self.item_class...</upnp:class>
    <desc id="cdudn"
      nameSpace="urn:schemas-rinconnetworks-com:metadata-1-0/">
      RINCON_AssociatedZPUDN
    </desc>
  </item>
</DIDL-Lite>






	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object'

	str - the DIDL Lite class for this object.






	
tag = 'item'

	str - the XML element tag name used for this instance.






	
_translation = {'creator': ('dc', 'creator'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.






	
classmethod from_element(element)

	Create an instance of this class from an ElementTree xml Element.

An alternative constructor. The element must be a DIDL-Lite <item> or
<container> element, and must be properly namespaced.


	Parameters

	xml (Element [https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element]) – An
Element [https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element] object.










	
classmethod from_dict(content)

	Create an instance from a dict.

An alternative constructor. Equivalent to DidlObject(**content).


	Parameters

	content (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dict containing metadata information. Required.
Valid keys are the same as the parameters for DidlObject.










	
to_dict(remove_nones=False)

	Return the dict representation of the instance.


	Parameters

	remove_nones – Optionally remove dictionary
elements when their value is None [https://docs.python.org/3/library/constants.html#None].










	
to_element(include_namespaces=False)

	Return an ElementTree Element representing this instance.


	Parameters

	include_namespaces (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, include xml
namespace attributes on the root element



	Returns

	an Element.



	Return type

	Element [https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element]










	
get_uri(resource_nr=0)

	Return the uri to use for playing this item.


	Parameters

	resource_nr (int [https://docs.python.org/3/library/functions.html#int]) – The index of the resource. Note that there is no
known object with more than one resource, so you can probably
keep the default value (0).



	Returns

	The uri.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
set_uri(uri, resource_nr=0, protocol_info=None)

	Set a resource uri for this instance. If no resource exists, create
a new one with the given protocol info.


	Parameters

	
	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – The resource uri.


	resource_nr (int [https://docs.python.org/3/library/functions.html#int]) – The index of the resource on which to set the
uri. If it does not exist, a new resource is added to the list.
Note that by default, only the uri of the first resource is
used for playing the item.


	protocol_info (str [https://docs.python.org/3/library/stdtypes.html#str]) – Protocol info for the resource. If none is
given and the resource does not exist yet, a default protocol
info is constructed as '[uri prefix]:*:*:*'.

















	
class soco.data_structures.DidlItem(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	A basic content directory item.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.item'

	str - the DIDL Lite class for this object.






	
tag = 'item'

	str - the XML element tag name used for this instance.






	
_translation = {'album_art_uri': ('upnp', 'albumArtURI'), 'creator': ('dc', 'creator'), 'radio_show': ('r', 'radioShowMd'), 'stream_content': ('r', 'streamContent'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlAudioItem(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	An audio item.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.item.audioItem'

	str - the DIDL Lite class for this object.






	
tag = 'item'

	str - the XML element tag name used for this instance.






	
_translation = {'album_art_uri': ('upnp', 'albumArtURI'), 'creator': ('dc', 'creator'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'publisher': ('dc', 'publisher'), 'radio_show': ('r', 'radioShowMd'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'stream_content': ('r', 'streamContent'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlMusicTrack(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Class that represents a music library track.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.item.audioItem.musicTrack'

	str - the DIDL Lite class for this object.






	
tag = 'item'

	str - the XML element tag name used for this instance.






	
_translation = {'album': ('upnp', 'album'), 'album_art_uri': ('upnp', 'albumArtURI'), 'artist': ('upnp', 'artist'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'original_track_number': ('upnp', 'originalTrackNumber'), 'playlist': ('upnp', 'playlist'), 'publisher': ('dc', 'publisher'), 'radio_show': ('r', 'radioShowMd'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'stream_content': ('r', 'streamContent'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlAudioBook(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Class that represents an audio book.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.item.audioItem.audioBook'

	str - the DIDL Lite class for this object.






	
tag = 'item'

	str - the XML element tag name used for this instance.






	
_translation = {'album_art_uri': ('upnp', 'albumArtURI'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'producer': ('upnp', 'producer'), 'publisher': ('dc', 'publisher'), 'radio_show': ('r', 'radioShowMd'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'storageMedium': ('upnp', 'storageMedium'), 'stream_content': ('r', 'streamContent'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlAudioBroadcast(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Class that represents an audio broadcast.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.item.audioItem.audioBroadcast'

	str - the DIDL Lite class for this object.






	
tag = 'item'

	str - the XML element tag name used for this instance.






	
_translation = {'album_art_uri': ('upnp', 'albumArtURI'), 'channel_nr': ('upnp', 'channelNr'), 'creator': ('dc', 'creator'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'publisher': ('dc', 'publisher'), 'radio_call_sign': ('upnp', 'radioCallSign'), 'radio_show': ('r', 'radioShowMd'), 'radio_station_id': ('upnp', 'radioStationID'), 'region': ('upnp', 'region'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'stream_content': ('r', 'streamContent'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlRecentShow(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Class that represents a recent radio show/podcast.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.item.audioItem.musicTrack.recentShow'

	str - the DIDL Lite class for this object.






	
tag = 'item'

	str - the XML element tag name used for this instance.






	
_translation = {'album': ('upnp', 'album'), 'album_art_uri': ('upnp', 'albumArtURI'), 'artist': ('upnp', 'artist'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'original_track_number': ('upnp', 'originalTrackNumber'), 'playlist': ('upnp', 'playlist'), 'publisher': ('dc', 'publisher'), 'radio_show': ('r', 'radioShowMd'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'stream_content': ('r', 'streamContent'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlAudioBroadcastFavorite(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Class that represents an audio broadcast Sonos favorite.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.item.audioItem.audioBroadcast.sonos-favorite'

	str - the DIDL Lite class for this object.






	
tag = 'item'

	str - the XML element tag name used for this instance.






	
_translation = {'album_art_uri': ('upnp', 'albumArtURI'), 'channel_nr': ('upnp', 'channelNr'), 'creator': ('dc', 'creator'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'publisher': ('dc', 'publisher'), 'radio_call_sign': ('upnp', 'radioCallSign'), 'radio_show': ('r', 'radioShowMd'), 'radio_station_id': ('upnp', 'radioStationID'), 'region': ('upnp', 'region'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'stream_content': ('r', 'streamContent'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlFavorite(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Class that represents a Sonos favorite.

Note that the favorite itself isn’t playable in all cases, please use the
object returned by favorite.reference instead.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.itemobject.item.sonos-favorite'

	str - the DIDL Lite class for this object.






	
tag = 'item'

	str - the XML element tag name used for this instance.






	
_translation = {'album_art_uri': ('upnp', 'albumArtURI'), 'creator': ('dc', 'creator'), 'description': ('r', 'description'), 'favorite_nr': ('r', 'ordinal'), 'radio_show': ('r', 'radioShowMd'), 'resource_meta_data': ('r', 'resMD'), 'stream_content': ('r', 'streamContent'), 'type': ('r', 'type'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.






	
reference

	The Didl object this favorite refers to.










	
class soco.data_structures.DidlContainer(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Class that represents a music library container.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.container'

	str - the DIDL Lite class for this object.






	
tag = 'container'

	str - the XML element tag name used for this instance.






	
_translation = {'creator': ('dc', 'creator'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlAlbum(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	A content directory album.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.container.album'

	str - the DIDL Lite class for this object.






	
tag = 'container'

	str - the XML element tag name used for this instance.






	
_translation = {'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'long_description': ('upnp', 'longDescription'), 'publisher': ('dc', 'publisher'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlMusicAlbum(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Class that represents a music library album.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.container.album.musicAlbum'

	str - the DIDL Lite class for this object.






	
tag = 'container'

	str - the XML element tag name used for this instance.






	
_translation = {'album_art_uri': ('upnp', 'albumArtURI'), 'artist': ('upnp', 'artist'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'long_description': ('upnp', 'longDescription'), 'producer': ('upnp', 'producer'), 'publisher': ('dc', 'publisher'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'toc': ('upnp', 'toc'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlMusicAlbumFavorite(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Class that represents a Sonos favorite music library album.

This class is not part of the DIDL spec and is Sonos specific.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.container.album.musicAlbum.sonos-favorite'

	str - the DIDL Lite class for this object.






	
tag = 'item'

	str - the XML element tag name used for this instance.






	
_translation = {'album_art_uri': ('upnp', 'albumArtURI'), 'artist': ('upnp', 'artist'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'long_description': ('upnp', 'longDescription'), 'producer': ('upnp', 'producer'), 'publisher': ('dc', 'publisher'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'toc': ('upnp', 'toc'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlMusicAlbumCompilation(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Class that represents a Sonos favorite music library compilation.

This class is not part of the DIDL spec and is Sonos specific.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.container.album.musicAlbum.compilation'

	str - the DIDL Lite class for this object.






	
tag = 'container'

	str - the XML element tag name used for this instance.






	
_translation = {'album_art_uri': ('upnp', 'albumArtURI'), 'artist': ('upnp', 'artist'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'long_description': ('upnp', 'longDescription'), 'producer': ('upnp', 'producer'), 'publisher': ('dc', 'publisher'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'toc': ('upnp', 'toc'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlPerson(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	A content directory class representing a person.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.container.person'

	str - the DIDL Lite class for this object.






	
tag = 'item'

	str - the XML element tag name used for this instance.






	
_translation = {'creator': ('dc', 'creator'), 'language': ('dc', 'language'), 'write_status': ('upnp', 'writeStatus')}

	dfdf
dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlComposer(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Class that represents a music library composer.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.container.person.composer'

	str - the DIDL Lite class for this object.






	
tag = 'item'

	str - the XML element tag name used for this instance.






	
_translation = {'creator': ('dc', 'creator'), 'language': ('dc', 'language'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlMusicArtist(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Class that represents a music library artist.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.container.person.musicArtist'

	str - the DIDL Lite class for this object.






	
tag = 'item'

	str - the XML element tag name used for this instance.






	
_translation = {'artist_discography_uri': ('upnp', 'artistDiscographyURI'), 'creator': ('dc', 'creator'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlAlbumList(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Class that represents a music library album list.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.container.albumlist'

	str - the DIDL Lite class for this object.






	
tag = 'container'

	str - the XML element tag name used for this instance.






	
_translation = {'creator': ('dc', 'creator'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlPlaylistContainer(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Class that represents a music library play list.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.container.playlistContainer'

	str - the DIDL Lite class for this object.






	
tag = 'item'

	str - the XML element tag name used for this instance.






	
_translation = {'artist': ('upnp', 'artist'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'producer': ('dc', 'producer'), 'rights': ('dc', 'rights'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlSameArtist(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Class that represents all tracks by a single artist.

This type is returned by browsing an artist or a composer


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.container.playlistContainer.sameArtist'

	str - the DIDL Lite class for this object.






	
tag = 'item'

	str - the XML element tag name used for this instance.






	
_translation = {'artist': ('upnp', 'artist'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'producer': ('dc', 'producer'), 'rights': ('dc', 'rights'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlPlaylistContainerFavorite(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Class that represents a Sonos favorite play list.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.container.playlistContainer.sonos-favorite'

	str - the DIDL Lite class for this object.






	
tag = 'item'

	str - the XML element tag name used for this instance.






	
_translation = {'artist': ('upnp', 'artist'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'producer': ('dc', 'producer'), 'rights': ('dc', 'rights'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlPlaylistContainerTracklist(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Class that represents a Sonos tracklist.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.container.playlistContainer.tracklist'

	str - the DIDL Lite class for this object.






	
tag = 'item'

	str - the XML element tag name used for this instance.






	
_translation = {'artist': ('upnp', 'artist'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'producer': ('dc', 'producer'), 'rights': ('dc', 'rights'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlGenre(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	A content directory class representing a general genre.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.container.genre'

	str - the DIDL Lite class for this object.






	
tag = 'container'

	str - the XML element tag name used for this instance.






	
_translation = {'creator': ('dc', 'creator'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'long_description': ('upnp', 'longDescription'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlMusicGenre(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Class that represents a music genre.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.container.genre.musicGenre'

	str - the DIDL Lite class for this object.






	
tag = 'item'

	str - the XML element tag name used for this instance.






	
_translation = {'creator': ('dc', 'creator'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'long_description': ('upnp', 'longDescription'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.DidlRadioShow(title, parent_id, item_id, restricted=True, resources=None, desc='RINCON_AssociatedZPUDN', **kwargs)

	Class that represents a radio show.


	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title for the item.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the parent ID for the item.


	item_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID for the item.


	restricted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the item can be modified. Default True [https://docs.python.org/3/library/constants.html#True]


	resources (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – a list of resources for this object.


	None. (Default) – 


	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A DIDL descriptor, default
'RINCON_AssociatedZPUDN'. This is not the same as
“description”. It is used for identifying the relevant
third party music service.


	**kwargs – Extra metadata. What is allowed depends on the
_translation class attribute, which in turn depends on the
DIDL class.









	
item_class = 'object.container.radioShow'

	str - the DIDL Lite class for this object.






	
tag = 'container'

	str - the XML element tag name used for this instance.






	
_translation = {'creator': ('dc', 'creator'), 'write_status': ('upnp', 'writeStatus')}

	dict - A dict used to translate between instance attribute
names and XML tags/namespaces. It also serves to define the
allowed tags/attributes for this instance. Each key an attribute
name and each key is a (namespace, tag) tuple.










	
class soco.data_structures.ListOfMusicInfoItems(items, number_returned, total_matches, update_id)

	Abstract container class for a list of music information items.

Instances of this class are returned from queries into the music library
or to music services. The attributes total_matches and
number_returned are used to ascertain whether paging is required
in order to retrive all elements of the query. total_matches is
the total number of results to the query and number_returned is
the number of results actually returned. If the two differ, paging is
required. Paging is typically performed with the start and
max_items arguments to the query method. See e.g. the
get_music_library_information()
method for details.


	
number_returned

	the number of returned matches.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
total_matches

	the number of total matches.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
update_id

	the update ID.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]














	
class soco.data_structures.SearchResult(items, search_type, number_returned, total_matches, update_id)

	Container class that represents a search or browse result.

Browse is just a special case of search.


	
search_type

	the search type.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]














	
class soco.data_structures.Queue(items, number_returned, total_matches, update_id)

	Container class that represents a queue.








          

      

      

    




  

    
      
          
            
  
soco.discovery module

This module contains methods for discovering Sonos devices on the
network.


	
soco.discovery.discover(timeout=5, include_invisible=False, interface_addr=None, allow_network_scan=False, **network_scan_kwargs)

	Discover Sonos zones on the local network.

Return a set of SoCo instances for each zone found.
Include invisible zones (bridges and slave zones in stereo pairs if
include_invisible is True [https://docs.python.org/3/library/constants.html#True]. Will block for up to timeout seconds,
after which return None [https://docs.python.org/3/library/constants.html#None] if no zones found.

Note that the presence of a SoCo object in the returned set is not a
guarantee that the associated Sonos player is currently contactable. This
is because the set of SoCo objects is generated by interrogating the
first discovered player to determine the current set of players, and this
data can lag the actual state of the system, e.g., if a speaker has been
recently switched off.


	Parameters

	
	timeout (int [https://docs.python.org/3/library/functions.html#int], optional) – block for this many seconds, at most.
Defaults to 5.


	include_invisible (bool [https://docs.python.org/3/library/functions.html#bool], optional) – include invisible zones in the
return set. Defaults to False [https://docs.python.org/3/library/constants.html#False].


	interface_addr (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – Discovery operates by sending UDP
multicast datagrams. interface_addr is a string (dotted
quad) representation of the network interface address to use as
the source of the datagrams (i.e., it is a value for
socket.IP_MULTICAST_IF [https://docs.python.org/3/library/socket.html#module-socket]). If None [https://docs.python.org/3/library/constants.html#None] or not specified,
the system default interface(s) for UDP multicast messages will be
used. This is probably what you want to happen. Defaults to
None [https://docs.python.org/3/library/constants.html#None].


	allow_network_scan (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If normal discovery fails, fall
back to a scan of the attached network(s) to detect Sonos
devices.


	**network_scan_kwargs – Arguments for the scan_network function.
See its docstring for details.






	Returns

	a set of SoCo instances, one for each zone found, or else
None [https://docs.python.org/3/library/constants.html#None].



	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]










	
soco.discovery.any_soco(allow_network_scan=False, **network_scan_kwargs)

	Return any visible soco device, for when it doesn’t matter which.

Try to obtain an existing instance, or use discover if necessary.
Note that this assumes that the existing instance has not left
the network.


	Parameters

	
	allow_network_scan (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If normal discovery fails, fall
back to a scan of the attached network(s) to detect Sonos
devices.


	**network_scan_kwargs – Arguments for the scan_network function.
See its docstring for details.






	Returns

	A SoCo instance (or subclass if config.SOCO_CLASS is set),
or None [https://docs.python.org/3/library/constants.html#None] if no instances are found.



	Return type

	SoCo










	
soco.discovery.by_name(name, allow_network_scan=False, **network_scan_kwargs)

	Return a device by name.


	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the device to return.


	allow_network_scan (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If normal discovery fails, fall
back to a scan of the attached network(s) to detect Sonos
devices.


	**network_scan_kwargs – Arguments for the scan_network function.
See its docstring for details.






	Returns

	A SoCo instance (or subclass if config.SOCO_CLASS is set),
or None [https://docs.python.org/3/library/constants.html#None] if no instances are found.



	Return type

	SoCo










	
soco.discovery.scan_network(include_invisible=False, multi_household=False, max_threads=256, scan_timeout=0.1, min_netmask=24, networks_to_scan=None)

	Scan all attached networks for Sonos devices.

This function scans the IPv4 networks to which this node is attached,
searching for Sonos devices. Multiple parallel threads are used to
scan IP addresses in parallel for faster discovery.

Public, loopback and link local IP ranges are excluded from the scan,
and the scope of the search can be controlled by setting a minimum netmask.

Alternatively, a list of networks to scan can be provided.

This function is intended for use when the usual discovery function is not
working, perhaps due to multicast problems on the network to which the SoCo
host is attached. The function can also be used to find a complete list of
speakers when there are multiple Sonos households present.
For example, this is the case where there are ‘split’ S1/S2 Sonos systems
on the network.

Note that this call may fail to find speakers present on the network, and
this can be due to ARP cache misses and ARP requests that don’t
complete within the timeout. The call can be retried with longer values for
scan_timeout if necessary.

Note also that the presence of a SoCo object in the returned set is not a
guarantee that the associated Sonos player is currently contactable. This
is because the set of SoCo objects is partly generated by interrogating
discovered players to determine the current set(s) of players, and this can
lag the actual state of the system, e.g., if a speaker has been recently
switched off.


	Parameters

	
	include_invisible (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to include invisible Sonos devices
in the set of devices returned.


	multi_household (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to find all the speakers on the
network exhaustively.
If set to False [https://docs.python.org/3/library/constants.html#False], discovery will stop as soon as at least one speaker is
found. In the case of multiple households on the attached networks, this
means that only the speakers from the first-discovered household will be
returned.
If set to True [https://docs.python.org/3/library/constants.html#True], discovery will proceed until all speakers, from all
households, have been found.


	max_threads (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum number of threads to use when
scanning the network.


	scan_timeout (float [https://docs.python.org/3/library/functions.html#float], optional) – The network timeout in seconds to use when
checking each IP address for a Sonos device.


	min_netmask (int [https://docs.python.org/3/library/functions.html#int], optional) – The minimum number of netmask bits. Used to
constrain the network search space.


	networks_to_scan (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – A list [https://docs.python.org/3/library/stdtypes.html#list] of IPv4 networks to search,
each a str [https://docs.python.org/3/library/stdtypes.html#str] of form “192.168.0.1/24”. Only the specified networks will
be searched. The ‘min_netmask’ option (if supplied) is ignored.






	Returns

	A set of SoCo instances, one for each zone found, or else None [https://docs.python.org/3/library/constants.html#None].



	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]










	
soco.discovery.scan_network_by_household_id(household_id, include_invisible=False, **network_scan_kwargs)

	Convenience function to find the zones in a specific Sonos
household.


	Parameters

	
	household_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Sonos household ID to search for. IDs take the
form ‘Sonos_XXXXXXXXXXXXXXXXXXXXXXXXXX’.


	include_invisible (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to include invisible Sonos devices
in the set of devices returned.


	**network_scan_kwargs – Arguments for the scan_network function.
See its docstring for details. (Note that the argument
‘multi_household’ is forced to True [https://docs.python.org/3/library/constants.html#True] when this function is
called.)






	Returns

	A set of SoCo instances, one for each zone found, or else None [https://docs.python.org/3/library/constants.html#None].



	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]










	
soco.discovery.scan_network_get_household_ids(**network_scan_kwargs)

	Convenience function to find the all Sonos households on the attached
networks.


	Parameters

	**network_scan_kwargs – Arguments for the scan_network function.
See its docstring for details. (Note that the argument
‘multi_household’ is forced to True [https://docs.python.org/3/library/constants.html#True] when this function is
called.)



	Returns

	A set of Sonos household IDs, each in the form of a str [https://docs.python.org/3/library/stdtypes.html#str]
like ‘Sonos_XXXXXXXXXXXXXXXXXXXXXXXXXX’.



	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]










	
soco.discovery.scan_network_get_by_name(name, household_id=None, **network_scan_kwargs)

	Convenience function to use scan_network to find a zone
by its name.

Note that if there are multiple zones with the same name,
then only one of the zones will be returned. Optionally,
the search can be constrained to a specific household.


	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the zone to find.


	household_id (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Use this to find the zone in a specific
Sonos household.


	**network_scan_kwargs – Arguments for the scan_network function.
See its docstring for details. (Note that the argument
‘multi_household’ is forced to True [https://docs.python.org/3/library/constants.html#True] when this function is
called.)






	Returns

	A SoCo instance representing the zone, or None [https://docs.python.org/3/library/constants.html#None] if no
matching zone is found. Only returns visible zones.



	Return type

	SoCo










	
soco.discovery.scan_network_any_soco(household_id=None, **network_scan_kwargs)

	Convenience function to use scan_network to find any zone,
optionally specifying a Sonos household.


	Parameters

	
	household_id (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Use this to find a zone in a specific
Sonos household.


	**network_scan_kwargs – Arguments for the scan_network function.
See its docstring for details.






	Returns

	A SoCo instance representing the zone, or None [https://docs.python.org/3/library/constants.html#None] if no
zone is found (or no zone is found that matches a supplied
household_id).



	Return type

	SoCo










	
soco.discovery.contactable(speakers)

	Find only contactable players in a set of SoCo objects.

This function checks a set of SoCo objects to ensure that each
associated Sonos player is currently contactable. A new set
is returned containing only contactable players.

If there are non-contactable players, the function return will
be delayed until at least one network timeout has expired (several
seconds). Contact attempts run in parallel threads to minimise
delays.


	Parameters

	speakers (set [https://docs.python.org/3/library/stdtypes.html#set]) – A set of SoCo objects.



	Returns

	A set of SoCo objects, all of which have been
confirmed to be currently contactable. An empty set
is returned if no speakers are contactable.



	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]












          

      

      

    




  

    
      
          
            
  
soco.events module

Classes to handle Sonos UPnP Events and Subscriptions.

The Subscription class from this module will be used in
soco.services unless config.EVENTS_MODULE is set to
point to soco.events_twisted, in which case
soco.events_twisted.Subscription will be used.  See the
Example in soco.events_twisted.

Example

Run this code, and change your volume, tracks etc:

from queue import Empty

import logging
logging.basicConfig()
import soco
from pprint import pprint
from soco.events import event_listener
# pick a device at random and use it to get
# the group coordinator
device = soco.discover().pop().group.coordinator
print (device.player_name)
sub = device.renderingControl.subscribe()
sub2 = device.avTransport.subscribe()

while True:
    try:
        event = sub.events.get(timeout=0.5)
        pprint (event.variables)
    except Empty:
        pass
    try:
        event = sub2.events.get(timeout=0.5)
        pprint (event.variables)
    except Empty:
        pass

    except KeyboardInterrupt:
        sub.unsubscribe()
        sub2.unsubscribe()
        event_listener.stop()
        break






	
class soco.events.EventServer(server_address, RequestHandlerClass, bind_and_activate=True)

	A TCP server which handles each new request in a new thread.

Constructor.  May be extended, do not override.






	
class soco.events.EventNotifyHandler(*args, **kwargs)

	Handles HTTP NOTIFY Verbs sent to the listener server.
Inherits from soco.events_base.EventNotifyHandlerBase.


	
do_NOTIFY()

	Serve a NOTIFY request by calling handle_notification
with the headers and content.






	
log_message(fmt, *args)

	Log an arbitrary message.

This is used by all other logging functions.  Override
it if you have specific logging wishes.

The first argument, FORMAT, is a format string for the
message to be logged.  If the format string contains
any % escapes requiring parameters, they should be
specified as subsequent arguments (it’s just like
printf!).

The client ip and current date/time are prefixed to
every message.










	
class soco.events.EventServerThread(server)

	The thread in which the event listener server will run.


	Parameters

	address (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The (ip, port) address on which the server
should listen.






	
stop_flag = None

	Used to signal that the server should stop.


	Type

	threading.Event [https://docs.python.org/3/library/threading.html#threading.Event]










	
server = None

	The (ip, port) address on which the server is
configured to listen.


	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]










	
run()

	Start the server

Handling of requests is delegated to an instance of the
EventNotifyHandler class.






	
stop()

	Stop the server.










	
class soco.events.EventListener

	The Event Listener.

Runs an http server in a thread which is an endpoint for NOTIFY
requests from Sonos devices. Inherits from
soco.events_base.EventListenerBase.


	
listen(ip_address)

	Start the event listener listening on the local machine at
port 1400 (default). If this port is unavailable, the
listener will attempt to listen on the next available port,
within a range of 100.

Make sure that your firewall allows connections to this port.

This method is called by soco.events_base.EventListenerBase.start


	Parameters

	ip_address (str [https://docs.python.org/3/library/stdtypes.html#str]) – The local network interface on which the server
should start listening.



	Returns

	requested_port_number. Included for
compatibility with soco.events_twisted.EventListener.listen



	Return type

	int [https://docs.python.org/3/library/functions.html#int]






Note

The port on which the event listener listens is configurable.
See config.EVENT_LISTENER_PORT








	
stop_listening(address)

	Stop the listener.










	
class soco.events.Subscription(service, event_queue=None)

	A class representing the subscription to a UPnP event.
Inherits from soco.events_base.SubscriptionBase.


	Parameters

	
	service (Service) – The SoCo Service to which the subscription
should be made.


	event_queue (Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) – A queue on which received
events will be put. If not specified, a queue will be
created and used.









	
subscribe(requested_timeout=None, auto_renew=False, strict=True)

	Subscribe to the service.

If requested_timeout is provided, a subscription valid for that number
of seconds will be requested, but not guaranteed. Check
timeout on return to find out what period of validity is
actually allocated.

This method calls events_base.SubscriptionBase.subscribe.


Note

SoCo will try to unsubscribe any subscriptions which are still
subscribed on program termination, but it is good practice for
you to clean up by making sure that you call unsubscribe()
yourself.




	Parameters

	
	requested_timeout (int [https://docs.python.org/3/library/functions.html#int], optional) – The timeout to be requested.


	auto_renew (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True [https://docs.python.org/3/library/constants.html#True], renew the subscription
automatically shortly before timeout. Default False [https://docs.python.org/3/library/constants.html#False].


	strict (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True and an Exception occurs during
execution, the Exception will be raised or, if False, the
Exception will be logged and the Subscription instance will be
returned. Default True [https://docs.python.org/3/library/constants.html#True].






	Returns

	The Subscription instance.



	Return type

	Subscription










	
renew(requested_timeout=None)

	Renew the event subscription.
You should not try to renew a subscription which has been
unsubscribed, or once it has expired.

This method calls events_base.SubscriptionBase.renew.


	Parameters

	
	requested_timeout (int [https://docs.python.org/3/library/functions.html#int], optional) – The period for which a renewal
request should be made. If None (the default), use the timeout
requested on subscription.


	is_autorenew (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether this is an autorenewal.
Default ‘False’.


	strict (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True and an Exception occurs during
execution, the Exception will be raised or, if False, the
Exception will be logged and the Subscription instance will be
returned. Default True [https://docs.python.org/3/library/constants.html#True].






	Returns

	The Subscription instance.



	Return type

	Subscription










	
unsubscribe()

	Unsubscribe from the service’s events.
Once unsubscribed, a Subscription instance should not be reused

This method calls events_base.SubscriptionBase.unsubscribe.


	Parameters

	strict (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True and an Exception occurs during
execution, the Exception will be raised or, if False, the
Exception will be logged and the Subscription instance will be
returned. Default True [https://docs.python.org/3/library/constants.html#True].



	Returns

	The Subscription instance.



	Return type

	Subscription















soco.events_base module

Base classes used by soco.events and
soco.events_twisted.


	
soco.events_base.parse_event_xml

	Parse the body of a UPnP event.


	Parameters

	xml_event (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – bytes containing the body of the event encoded
with utf-8.



	Returns

	A dict with keys representing the evented variables. The
relevant value will usually be a string representation of the
variable’s value, but may on occasion be:


	a dict (eg when the volume changes, the value will itself be a
dict containing the volume for each channel:
{'Volume': {'LF': '100', 'RF': '100', 'Master': '36'}})


	an instance of a DidlObject subclass (eg if it represents
track metadata).


	a SoCoFault (if a variable contains illegal metadata)








	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
class soco.events_base.Event(sid, seq, service, timestamp, variables=None)

	A read-only object representing a received event.

The values of the evented variables can be accessed via the variables
dict, or as attributes on the instance itself. You should treat all
attributes as read-only.


	Parameters

	
	sid (str [https://docs.python.org/3/library/stdtypes.html#str]) – the subscription id.


	seq (str [https://docs.python.org/3/library/stdtypes.html#str]) – the event sequence number for that subscription.


	timestamp (str [https://docs.python.org/3/library/stdtypes.html#str]) – the time that the event was received (from Python’s
time.time [https://docs.python.org/3/library/time.html#time.time] function).


	service (str [https://docs.python.org/3/library/stdtypes.html#str]) – the service which is subscribed to the event.


	variables (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – contains the {names: values} of the
evented variables. Defaults to None [https://docs.python.org/3/library/constants.html#None]. The values may be
SoCoFault objects if the metadata could not be parsed.






	Raises

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – Not all attributes are returned with each event. An
AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] will be raised if you attempt to access as an
attribute a variable which was not returned in the event.





Example

>>> print event.variables['transport_state']
'STOPPED'
>>> print event.transport_state
'STOPPED'










	
class soco.events_base.EventNotifyHandlerBase

	Base class for soco.events.EventNotifyHandler and
soco.events_twisted.EventNotifyHandler.


	
handle_notification(headers, content)

	Handle a NOTIFY request by building an Event object and
sending it to the relevant Subscription object.

A NOTIFY request will be sent by a Sonos device when a state
variable changes. See the UPnP Spec §4.3 [pdf] [http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf]  for details.


	Parameters

	
	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dict of received headers.


	content (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string of received content.









Note

Each of the soco.events and the
soco.events_twisted modules has a subscriptions_map
object which keeps a record of Subscription objects. The
get_subscription method of the subscriptions_map object is
used to look up the subscription to which the event relates. When
the Event Listener runs in a thread (the default), a lock is
used by this method for thread safety. The send_event
method of the relevant Subscription will first check to see
whether the callback variable of the Subscription has been
set. If it has been and is callable, then the callback
will be called with the Event object. Otherwise, the Event
object will be sent to the event queue of the Subscription
object. The callback variable of the Subscription object is
intended for use only if soco.events_twisted is being
used, as calls to it are not threadsafe.

This method calls the log_event method, which must be overridden
in the class that inherits from this class.












	
class soco.events_base.EventListenerBase

	Base class for soco.events.EventListener and
soco.events_twisted.EventListener.


	
is_running = None

	Indicates whether the server is currently running


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
requested_port_number = None

	Port on which to listen.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
start(any_zone)

	Start the event listener listening on the local machine.


	Parameters

	any_zone (SoCo) – Any Sonos device on the network. It does not
matter which device. It is used only to find a local IP
address reachable by the Sonos net.










	
stop()

	Stop the Event Listener.






	
listen(ip_address)

	Start the event listener listening on the local machine.
This method is called by start.


	Parameters

	ip_address (str [https://docs.python.org/3/library/stdtypes.html#str]) – The local network interface on which the server
should start listening.



	Returns

	The port on which the server is listening.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]






Note

This method must be overridden in the class that inherits from
this class.








	
stop_listening(address)

	Stop the listener.


Note

This method must be overridden in the class that inherits from
this class.












	
class soco.events_base.SubscriptionBase(service, event_queue=None)

	Base class for soco.events.Subscription and
soco.events_twisted.Subscription


	Parameters

	
	service (Service) – The SoCo Service to which the subscription
should be made.


	event_queue (Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) – A queue on which received
events will be put. If not specified, a queue will be
created and used.









	
sid = None

	A unique ID for this subscription


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
timeout = None

	The amount of time in seconds until the subscription expires.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
is_subscribed = None

	An indication of whether the subscription is subscribed.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
events = None

	The queue on which events are placed.


	Type

	Queue [https://docs.python.org/3/library/queue.html#queue.Queue]










	
requested_timeout = None

	The period (seconds) for which the subscription is requested


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
auto_renew_fail = None

	an optional function to be called if an
exception occurs upon autorenewal. This will be called with the
exception (or failure, when using soco.events_twisted)
as its only parameter. This function must be threadsafe (unless
soco.events_twisted is being used).


	Type

	function










	
subscribe(requested_timeout=None, auto_renew=False)

	Subscribe to the service.

If requested_timeout is provided, a subscription valid for that number
of seconds will be requested, but not guaranteed. Check
timeout on return to find out what period of validity is
actually allocated.


Note

SoCo will try to unsubscribe any subscriptions which are still
subscribed on program termination, but it is good practice for
you to clean up by making sure that you call unsubscribe()
yourself.




	Parameters

	
	requested_timeout (int [https://docs.python.org/3/library/functions.html#int], optional) – The timeout to be requested.


	auto_renew (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True [https://docs.python.org/3/library/constants.html#True], renew the subscription
automatically shortly before timeout. Default False [https://docs.python.org/3/library/constants.html#False].













	
renew(requested_timeout=None)

	Renew the event subscription.
You should not try to renew a subscription which has been
unsubscribed, or once it has expired.


	Parameters

	
	requested_timeout (int [https://docs.python.org/3/library/functions.html#int], optional) – The period for which a renewal
request should be made. If None (the default), use the timeout
requested on subscription.


	is_autorenew (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether this is an autorenewal.













	
unsubscribe()

	Unsubscribe from the service’s events.
Once unsubscribed, a Subscription instance should not be reused






	
send_event(event)

	Send an Event to self.callback or self.events.
If self.callback is set and is callable, it will be called with the
Event as the only parameter. Otherwise the Event will be sent to
self.events. As self.callback is not threadsafe, it should be set
only if soco.events_twisted.Subscription is being used.


	Parameters

	event (Event) – The Event to send to self.callback or
self.events.










	
time_left

	The amount of time left until the subscription expires (seconds)
If the subscription is unsubscribed (or not yet subscribed),
time_left is 0.


	Type

	int [https://docs.python.org/3/library/functions.html#int]














	
class soco.events_base.SubscriptionsMap

	Maintains a mapping of sids to soco.events.Subscription instances
and the thread safe lock to go with it. Registers each subscription to
be unsubscribed at exit.

SubscriptionsMapTwisted inherits from this class.


	
subscriptions = None

	Thread safe mapping.
Used to store a mapping of sid to subscription


	Type

	weakref.WeakValueDictionary [https://docs.python.org/3/library/weakref.html#weakref.WeakValueDictionary]










	
subscriptions_lock = None

	for use with subscriptions


	Type

	threading.Lock [https://docs.python.org/3/library/threading.html#threading.Lock]










	
register(subscription)

	Register a subscription by updating local mapping of sid to
subscription and registering it to be unsubscribed at exit.


	Parameters

	subscription (soco.events.Subscription) – the subscription
to be registered.










	
unregister(subscription)

	Unregister a subscription by updating local mapping of sid to
subscription instances.


	Parameters

	subscription (soco.events.Subscription) – the subscription
to be unregistered.





When using soco.events_twisted, an instance of
soco.events_twisted.Subscription will be unregistered.






	
get_subscription(sid)

	Look up a subscription from a sid.



	Args:

	sid(str): The sid from which to look up the subscription.



	Returns:

	soco.events.Subscription: The subscription relating
to that sid.








When using soco.events_twisted, an instance of
soco.events_twisted.Subscription will be returned.






	
count

	The number of active subscriptions.


	Type

	int [https://docs.python.org/3/library/functions.html#int]














	
soco.events_base.get_listen_ip(ip_address)

	Find the listen ip address.







soco.events_twisted module

Classes to handle Sonos UPnP Events and Subscriptions.

The Subscription class from this module will be used in
soco.services if config.EVENTS_MODULE is set
to point to this module.

Example

Run this code, and change your volume, tracks etc:

from __future__ import print_function
import logging
logging.basicConfig()
import soco
from pprint import pprint

from soco import events_twisted
soco.config.EVENTS_MODULE = events_twisted
from twisted.internet import reactor

def print_event(event):
    try:
        pprint (event.variables)
    except Exception as e:
        pprint ('There was an error in print_event:', e)

def main():
    # pick a device at random and use it to get
    # the group coordinator
    device = soco.discover().pop().group.coordinator
    print (device.player_name)
    sub = device.renderingControl.subscribe().subscription
    sub2 = device.avTransport.subscribe().subscription
    sub.callback = print_event
    sub2.callback = print_event

    def before_shutdown():
        sub.unsubscribe()
        sub2.unsubscribe()
        events_twisted.event_listener.stop()

    reactor.addSystemEventTrigger(
        'before', 'shutdown', before_shutdown)

if __name__=='__main__':
    reactor.callWhenRunning(main)
    reactor.run()






	
class soco.events_twisted.Resource

	Fake Resource class to use when building docs






	
class soco.events_twisted.EventNotifyHandler

	Handles HTTP NOTIFY Verbs sent to the listener server.
Inherits from soco.events_base.EventNotifyHandlerBase.


	
render_NOTIFY(request)

	Serve a NOTIFY request by calling handle_notification
with the headers and content.










	
class soco.events_twisted.EventListener

	The Event Listener.

Runs an http server which is an endpoint for NOTIFY
requests from Sonos devices. Inherits from
soco.events_base.EventListenerBase.


	
port = None

	set at listen


	Type

	twisted.internet.tcp.Port










	
listen(ip_address)

	Start the event listener listening on the local machine at
port 1400 (default). If this port is unavailable, the
listener will attempt to listen on the next available port,
within a range of 100.

Make sure that your firewall allows connections to this port.

This method is called by soco.events_base.EventListenerBase.start

Handling of requests is delegated to an instance of the
EventNotifyHandler class.


	Parameters

	ip_address (str [https://docs.python.org/3/library/stdtypes.html#str]) – The local network interface on which the server
should start listening.



	Returns

	The port on which the server is listening.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]






Note

The port on which the event listener listens is configurable.
See config.EVENT_LISTENER_PORT








	
stop_listening(address)

	Stop the listener.










	
class soco.events_twisted.Subscription(service, event_queue=None)

	A class representing the subscription to a UPnP event.
Inherits from soco.events_base.SubscriptionBase.


	Parameters

	
	service (Service) – The SoCo Service to which the subscription
should be made.


	event_queue (Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) – A queue on which received
events will be put. If not specified, a queue will be
created and used.









	
callback = None

	callback function to be called whenever an
Event is received. If it is set and is callable, the callback
function will be called with the Event as the only parameter and
the Subscription’s event queue won’t be used.


	Type

	function










	
subscribe(requested_timeout=None, auto_renew=False, strict=True)

	Subscribe to the service.

If requested_timeout is provided, a subscription valid for that number
of seconds will be requested, but not guaranteed. Check
timeout on return to find out what period of validity is
actually allocated.

This method calls events_base.SubscriptionBase.subscribe.


Note

SoCo will try to unsubscribe any subscriptions which are still
subscribed on program termination, but it is good practice for
you to clean up by making sure that you call unsubscribe()
yourself.




	Parameters

	
	requested_timeout (int [https://docs.python.org/3/library/functions.html#int], optional) – The timeout to be requested.


	auto_renew (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True [https://docs.python.org/3/library/constants.html#True], renew the subscription
automatically shortly before timeout. Default False [https://docs.python.org/3/library/constants.html#False].


	strict (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True and an Exception occurs during
execution, the returned Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] will fail with a Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html]
which will be passed to the applicable errback (if any has
been set by the calling code) or, if False, the Failure will
be logged and the Subscription instance will be passed to
the applicable callback (if any has
been set by the calling code). Default True [https://docs.python.org/3/library/constants.html#True].






	Returns

	A Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] the result of which will be the
Subscription instance and the subscription property of which
will point to the Subscription instance.



	Return type

	Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html]










	
renew(requested_timeout=None)

	Renew the event subscription.
You should not try to renew a subscription which has been
unsubscribed, or once it has expired.

This method calls events_base.SubscriptionBase.renew.


	Parameters

	
	requested_timeout (int [https://docs.python.org/3/library/functions.html#int], optional) – The period for which a renewal
request should be made. If None (the default), use the timeout
requested on subscription.


	is_autorenew (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether this is an autorenewal.
Default False [https://docs.python.org/3/library/constants.html#False].


	strict (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True and an Exception occurs during
execution, the returned Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] will fail with a Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html]
which will be passed to the applicable errback (if any has
been set by the calling code) or, if False, the Failure will
be logged and the Subscription instance will be passed to
the applicable callback (if any has
been set by the calling code). Default True [https://docs.python.org/3/library/constants.html#True].






	Returns

	A Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] the result of which will be the
Subscription instance and the subscription property of which
will point to the Subscription instance.



	Return type

	Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html]










	
unsubscribe()

	Unsubscribe from the service’s events.
Once unsubscribed, a Subscription instance should not be reused

This method calls events_base.SubscriptionBase.unsubscribe.


	Parameters

	strict (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True and an Exception occurs during
execution, the returned Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] will fail with a Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html]
which will be passed to the applicable errback (if any has
been set by the calling code) or, if False, the Failure will
be logged and the Subscription instance will be passed to
the applicable callback (if any has
been set by the calling code). Default True [https://docs.python.org/3/library/constants.html#True].



	Returns

	A Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] the result of which will be the
Subscription instance and the subscription property of which
will point to the Subscription instance.



	Return type

	Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html]














	
class soco.events_twisted.SubscriptionsMapTwisted

	Maintains a mapping of sids to soco.events_twisted.Subscription
instances. Registers each subscription to be unsubscribed at exit.

Inherits from soco.events_base.SubscriptionsMap.


	
register(subscription)

	Register a subscription by updating local mapping of sid to
subscription and registering it to be unsubscribed at exit.


	Parameters

	subscription (soco.events_twisted.Subscription) – the subscription
to be registered.










	
subscribing()

	Called when the Subscription.subscribe method
commences execution.






	
finished_subscribing()

	Called when the Subscription.subscribe method
completes execution.






	
count

	The number of active or pending subscriptions.


	Type

	int [https://docs.python.org/3/library/functions.html#int]















soco.events_asyncio module




          

      

      

    




  

    
      
          
            
  
soco.exceptions module

Exceptions that are used by SoCo.


	
exception soco.exceptions.SoCoException

	Base class for all SoCo exceptions.






	
exception soco.exceptions.UnknownSoCoException

	An unknown UPnP error.

The exception object will contain the raw response sent back from
the speaker as the first of its args.






	
exception soco.exceptions.SoCoUPnPException(message, error_code, error_xml, error_description='')

	A UPnP Fault Code, raised in response to actions sent over the
network.


	Parameters

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – The message from the server.


	error_code (str [https://docs.python.org/3/library/stdtypes.html#str]) – The UPnP Error Code as a string.


	error_xml (str [https://docs.python.org/3/library/stdtypes.html#str]) – The xml containing the error, as a utf-8
encoded string.


	error_description (str [https://docs.python.org/3/library/stdtypes.html#str]) – A description of the error. Default is “”













	
exception soco.exceptions.CannotCreateDIDLMetadata

	
Deprecated since version 0.11: Use DIDLMetadataError instead.








	
exception soco.exceptions.DIDLMetadataError

	Raised if a data container class cannot create the DIDL metadata due to
missing information.

For backward compatibility, this is currently a subclass of
CannotCreateDIDLMetadata. In a future version, it will likely become
a direct subclass of SoCoException.






	
exception soco.exceptions.MusicServiceException

	An error relating to a third party music service.






	
exception soco.exceptions.MusicServiceAuthException

	An error relating to authentication of a third party music service






	
exception soco.exceptions.UnknownXMLStructure

	Raised if XML with an unknown or unexpected structure is returned.






	
exception soco.exceptions.SoCoSlaveException

	Raised when a master command is called on a slave.






	
exception soco.exceptions.SoCoNotVisibleException

	Raised when a command intended for a visible speaker is called
on an invisible one.






	
exception soco.exceptions.NotSupportedException

	Raised when something is not supported by the device






	
exception soco.exceptions.EventParseException(tag, metadata, cause)

	Raised when a parsing exception occurs during event handling.


	
tag

	The tag for which the exception occured


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
metadata

	The metadata which failed to parse


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
__cause__

	The original exception


	Type

	Exception [https://docs.python.org/3/library/exceptions.html#Exception]










	Parameters

	
	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – The tag for which the exception occured


	metadata (str [https://docs.python.org/3/library/stdtypes.html#str]) – The metadata which failed to parse


	cause (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – The original exception













	
class soco.exceptions.SoCoFault(exception)

	Class to represent a failed object instantiation.

It rethrows the exception on common use.


	
exception

	The exception which will be thrown on use






	Parameters

	exception (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – The exception which should be thrown on use












          

      

      

    




  

    
      
          
            
  
soco.groups module

This module contains classes and functionality relating to Sonos Groups.


	
class soco.groups.ZoneGroup(uid, coordinator, members=None)

	A class representing a Sonos Group. It looks like this:

ZoneGroup(
    uid='RINCON_000FD584236D01400:58',
    coordinator=SoCo("192.168.1.101"),
    members={SoCo("192.168.1.101"), SoCo("192.168.1.102")}
)





Any SoCo instance can tell you what group it is in:

>>> device = soco.discovery.any_soco()
>>> device.group
ZoneGroup(
    uid='RINCON_000FD584236D01400:58',
    coordinator=SoCo("192.168.1.101"),
    members={SoCo("192.168.1.101"), SoCo("192.168.1.102")}
)





From there, you can find the coordinator for the current group:

>>> device.group.coordinator
SoCo("192.168.1.101")





or, for example, its name:

>>> device.group.coordinator.player_name
Kitchen





or a set of the members:

>>> device.group.members
{SoCo("192.168.1.101"), SoCo("192.168.1.102")}





For convenience, ZoneGroup is also a container:

>>> for player in device.group:
...   print player.player_name
Living Room
Kitchen





If you need it, you can get an iterator over all groups on the network:

>>> device.all_groups
<generator object all_groups at 0x108cf0c30>





A consistent readable label for the group members can be returned with
the label and short_label properties.

Properties are available to get and set the group volume and the group
mute state, and the set_relative_volume() method can be used to make
relative adjustments to the group volume, e.g.:

>>> device.group.volume = 25
>>> device.group.volume
25
>>> device.group.set_relative_volume(-10)
15
>>> device.group.mute
>>> False
>>> device.group.mute = True
>>> device.group.mute
True






	Parameters

	
	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) – The unique Sonos ID for this group, eg
RINCON_000FD584236D01400:5.


	coordinator (SoCo) – The SoCo instance representing the coordinator
of this group.


	members (Iterable[SoCo]) – An iterable containing SoCo instances
which represent the members of this group.









	
uid = None

	The unique Sonos ID for this group






	
coordinator = None

	The SoCo instance which coordinates this group






	
members = None

	A set of SoCo instances which are members of the group






	
label

	A description of the group.

>>> device.group.label
'Kitchen, Living Room'






	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
short_label

	A short description of the group.

>>> device.group.short_label
'Kitchen + 1'






	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
volume

	The volume of the group.

An integer between 0 and 100.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
mute

	The mute state for the group.

True or False.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
set_relative_volume(relative_group_volume)

	Adjust the group volume up or down by a relative amount.

If the adjustment causes the volume to overshoot the maximum value
of 100, the volume will be set to 100. If the adjustment causes the
volume to undershoot the minimum value of 0, the volume will be set
to 0.

Note that this method is an alternative to using addition and
subtraction assignment operators (+=, -=) on the volume property
of a ZoneGroup instance. These operators perform the same function
as set_relative_volume() but require two network calls per
operation instead of one.


	Parameters

	relative_group_volume (int [https://docs.python.org/3/library/functions.html#int]) – The relative volume adjustment. Can be
positive or negative.



	Returns

	The new group volume setting.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]



	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If relative_group_volume cannot be cast as
an integer.
















          

      

      

    




  

    
      
          
            
  
soco.ms_data_structures module

This module contains all the data structures for music service plugins.


	
soco.ms_data_structures.get_ms_item(xml, service, parent_id)

	Return the music service item that corresponds to xml.

The class is identified by getting the type from the ‘itemType’ tag






	
soco.ms_data_structures.tags_with_text(xml, tags=None)

	Return a list of tags that contain text retrieved recursively from an
XML tree.






	
class soco.ms_data_structures.MusicServiceItem(**kwargs)

	Class that represents a music service item.


	
classmethod from_xml(xml, service, parent_id)

	Return a Music Service item generated from xml.


	Parameters

	
	xml (xml.etree.ElementTree.Element [https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element]) – Object XML. All items containing text are added to the
content of the item. The class variable valid_fields of each of
the classes list the valid fields (after translating the camel
case to underscore notation). Required fields are listed in the
class variable by that name (where ‘id’ has been renamed to
‘item_id’).


	service (Instance of sub-class of
soco.plugins.SoCoPlugin) – The music service (plugin) instance that retrieved the
element. This service must contain id_to_extended_id and
form_uri methods and description and service_id
attributes.


	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The parent ID of the item, will either be the
extended ID of another MusicServiceItem or of a search








For a track the XML can e.g. be on the following form:

<mediaMetadata xmlns="http://www.sonos.com/Services/1.1">
  <id>trackid_141359</id>
  <itemType>track</itemType>
  <mimeType>audio/aac</mimeType>
  <title>Teacher</title>
  <trackMetadata>
    <artistId>artistid_10597</artistId>
    <artist>Jethro Tull</artist>
    <composerId>artistid_10597</composerId>
    <composer>Jethro Tull</composer>
    <albumId>albumid_141358</albumId>
    <album>MU - The Best Of Jethro Tull</album>
    <albumArtistId>artistid_10597</albumArtistId>
    <albumArtist>Jethro Tull</albumArtist>
    <duration>229</duration>
    <albumArtURI>http://varnish01.music.aspiro.com/sca/
     imscale?h=90&amp;w=90&amp;img=/content/music10/prod/wmg/
     1383757201/094639008452_20131105025504431/resources/094639008452.
     jpg</albumArtURI>
    <canPlay>true</canPlay>
    <canSkip>true</canSkip>
    <canAddToFavorites>true</canAddToFavorites>
  </trackMetadata>
</mediaMetadata>










	
classmethod from_dict(dict_in)

	Initialize the class from a dict.


	Parameters

	dict_in (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dictionary that contains the item content. Required
fields are listed class variable by that name










	
to_dict

	Return a copy of the content dict.






	
didl_metadata

	Return the DIDL metadata for a Music Service Track.

The metadata is on the form:

<DIDL-Lite xmlns:dc="http://purl.org/dc/elements/1.1/"
     xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
     xmlns:r="urn:schemas-rinconnetworks-com:metadata-1-0/"
     xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/">
  <item id="...self.extended_id..."
     parentID="...self.parent_id..."
     restricted="true">
    <dc:title>...self.title...</dc:title>
    <upnp:class>...self.item_class...</upnp:class>
    <desc id="cdudn"
       nameSpace="urn:schemas-rinconnetworks-com:metadata-1-0/">
      self.content['description']
    </desc>
  </item>
</DIDL-Lite>










	
item_id

	Return the item id.






	
extended_id

	Return the extended id.






	
title

	Return the title.






	
service_id

	Return the service ID.






	
can_play

	Return a boolean for whether the item can be played.






	
parent_id

	Return the extended parent_id, if set, otherwise return None.






	
album_art_uri

	Return the album art URI if set, otherwise return None.










	
class soco.ms_data_structures.MSTrack(title, item_id, extended_id, uri, description, service_id, **kwargs)

	Class that represents a music service track.

Initialize MSTrack item.


	
album

	Return the album title if set, otherwise return None.






	
artist

	Return the artist if set, otherwise return None.






	
duration

	Return the duration if set, otherwise return None.






	
uri

	Return the URI.










	
class soco.ms_data_structures.MSAlbum(title, item_id, extended_id, uri, description, service_id, **kwargs)

	Class that represents a Music Service Album.


	
artist

	Return the artist if set, otherwise return None.






	
uri

	Return the URI.










	
class soco.ms_data_structures.MSAlbumList(title, item_id, extended_id, uri, description, service_id, **kwargs)

	Class that represents a Music Service Album List.


	
uri

	Return the URI.










	
class soco.ms_data_structures.MSPlaylist(title, item_id, extended_id, uri, description, service_id, **kwargs)

	Class that represents a Music Service Play List.


	
uri

	Return the URI.










	
class soco.ms_data_structures.MSArtistTracklist(title, item_id, extended_id, uri, description, service_id, **kwargs)

	Class that represents a Music Service Artist Track List.


	
uri

	Return the URI.










	
class soco.ms_data_structures.MSArtist(title, item_id, extended_id, service_id, **kwargs)

	Class that represents a Music Service Artist.






	
class soco.ms_data_structures.MSFavorites(title, item_id, extended_id, service_id, **kwargs)

	Class that represents a Music Service Favorite.






	
class soco.ms_data_structures.MSCollection(title, item_id, extended_id, service_id, **kwargs)

	Class that represents a Music Service Collection.








          

      

      

    




  

    
      
          
            
  
soco.music_library module

Access to the Music Library.

The Music Library is the collection of music stored on your local network.
For access to third party music streaming services, see the
music_service module.


	
class soco.music_library.MusicLibrary(soco=None)

	The Music Library.


	Parameters

	soco (SoCo, optional) – A SoCo instance to query for music
library information. If None [https://docs.python.org/3/library/constants.html#None], or not supplied, a random
SoCo instance will be used.






	
build_album_art_full_uri(url)

	Ensure an Album Art URI is an absolute URI.


	Parameters

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – the album art URI.



	Returns

	An absolute URI.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
get_artists(*args, **kwargs)

	Convenience method for get_music_library_information
with search_type='artists'. For details of other arguments,
see that method.






	
get_album_artists(*args, **kwargs)

	Convenience method for get_music_library_information
with search_type='album_artists'. For details of other arguments,
see that method.






	
get_albums(*args, **kwargs)

	Convenience method for get_music_library_information
with search_type='albums'. For details of other arguments,
see that method.






	
get_genres(*args, **kwargs)

	Convenience method for get_music_library_information
with search_type='genres'. For details of other arguments,
see that method.






	
get_composers(*args, **kwargs)

	Convenience method for get_music_library_information
with search_type='composers'. For details of other arguments,
see that method.






	
get_tracks(*args, **kwargs)

	Convenience method for get_music_library_information
with search_type='tracks'. For details of other arguments,
see that method.






	
get_playlists(*args, **kwargs)

	Convenience method for get_music_library_information
with search_type='playlists'. For details of other arguments,
see that method.


Note

The playlists that are referred to here are the playlists imported
from the music library, they are not the Sonos playlists.








	
get_sonos_favorites(*args, **kwargs)

	Convenience method for get_music_library_information
with search_type='sonos_favorites'. For details of other arguments,
see that method.






	
get_favorite_radio_stations(*args, **kwargs)

	Convenience method for get_music_library_information
with search_type='radio_stations'. For details of other arguments,
see that method.






	
get_favorite_radio_shows(*args, **kwargs)

	Convenience method for get_music_library_information
with search_type='radio_stations'. For details of other arguments,
see that method.






	
get_music_library_information(search_type, start=0, max_items=100, full_album_art_uri=False, search_term=None, subcategories=None, complete_result=False)

	Retrieve music information objects from the music library.

This method is the main method to get music information items, like
e.g. tracks, albums etc., from the music library with. It can be used
in a few different ways:

The search_term argument performs a fuzzy search on that string in
the results, so e.g calling:

get_music_library_information('artists', search_term='Metallica')





will perform a fuzzy search for the term ‘Metallica’ among all the
artists.

Using the subcategories argument, will jump directly into that
subcategory of the search and return results from there. So. e.g
knowing that among the artist is one called ‘Metallica’, calling:

get_music_library_information('artists',
                              subcategories=['Metallica'])





will jump directly into the ‘Metallica’ sub category and return the
albums associated with Metallica and:

get_music_library_information('artists',
                              subcategories=['Metallica', 'Black'])





will return the tracks of the album ‘Black’ by the artist ‘Metallica’.
The order of sub category types is: Genres->Artists->Albums->Tracks.
It is also possible to combine the two, to perform a fuzzy search in a
sub category.

The start, max_items and complete_result arguments all
have to do with paging of the results. By default the searches are
always paged, because there is a limit to how many items we can get at
a time. This paging is exposed to the user with the start and
max_items arguments. So calling:

get_music_library_information('artists', start=0, max_items=100)
get_music_library_information('artists', start=100, max_items=100)





will get the first and next 100 items, respectively. It is also
possible to ask for all the elements at once:

get_music_library_information('artists', complete_result=True)





This will perform the paging internally and simply return all the
items.


	Parameters

	
	search_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The kind of information to retrieve. Can be one of:
'artists', 'album_artists', 'albums',
'genres', 'composers', 'tracks', 'share',
'sonos_playlists', or 'playlists', where playlists
are the imported playlists from the music library.


	start (int [https://docs.python.org/3/library/functions.html#int], optional) – starting number of returned matches
(zero based). Default 0.


	max_items (int [https://docs.python.org/3/library/functions.html#int], optional) – Maximum number of returned matches.
Default 100.


	full_album_art_uri (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the album art URI should be absolute (i.e. including
the IP address). Default False [https://docs.python.org/3/library/constants.html#False].


	search_term (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – a string that will be used to perform a fuzzy search among the
search results. If used in combination with subcategories,
the fuzzy search will be performed in the subcategory.


	subcategories (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A list of strings that indicate one or more subcategories to
dive into.


	complete_result (bool [https://docs.python.org/3/library/functions.html#bool]) – if True [https://docs.python.org/3/library/constants.html#True], will disable
paging (ignore start and max_items) and return all
results for the search.









Warning

Getting e.g. all the tracks in a large collection might
take some time.




	Returns

	an instance of SearchResult.



	Return type

	SearchResult






Note


	The maximum numer of results may be restricted by the unit,
presumably due to transfer size consideration, so check the
returned number against that requested.


	The playlists that are returned with the 'playlists' search,
are the playlists imported from the music library, they
are not the Sonos playlists.







	Raises

	SoCoException upon errors.










	
browse(ml_item=None, start=0, max_items=100, full_album_art_uri=False, search_term=None, subcategories=None)

	Browse (get sub-elements from) a music library item.


	Parameters

	
	ml_item (DidlItem) – the item to browse, if left out or
None [https://docs.python.org/3/library/constants.html#None], items at the root level will be searched.


	start (int [https://docs.python.org/3/library/functions.html#int]) – the starting index of the results.


	max_items (int [https://docs.python.org/3/library/functions.html#int]) – the maximum number of items to return.


	full_album_art_uri (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the album art URI should be
fully qualified with the relevant IP address.


	search_term (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string that will be used to perform a fuzzy
search among the search results. If used in combination with
subcategories, the fuzzy search will be performed on the
subcategory. Note: Searching will not work if ml_item is
None [https://docs.python.org/3/library/constants.html#None].


	subcategories (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of strings that indicate one or more
subcategories to descend into. Note: Providing sub categories
will not work if ml_item is None [https://docs.python.org/3/library/constants.html#None].






	Returns

	A SearchResult instance.



	Raises

	
	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – if ml_item has no item_id attribute.


	SoCoUPnPException – with error_code='701' if the item cannot be
browsed.













	
browse_by_idstring(search_type, idstring, start=0, max_items=100, full_album_art_uri=False)

	Browse (get sub-elements from) a given music library item,
specified by a string.


	Parameters

	
	search_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The kind of information to retrieve. Can be
one of: 'artists', 'album_artists', 'albums',
'genres', 'composers', 'tracks', 'share',
'sonos_playlists', and 'playlists', where
playlists are the imported file based playlists from the
music library.


	idstring (str [https://docs.python.org/3/library/stdtypes.html#str]) – a term to search for.


	start (int [https://docs.python.org/3/library/functions.html#int]) – starting number of returned matches. Default 0.


	max_items (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of returned matches. Default 100.


	full_album_art_uri (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the album art URI should be
absolute (i.e. including the IP address). Default False [https://docs.python.org/3/library/constants.html#False].






	Returns

	a SearchResult instance.



	Return type

	SearchResult






Note

The maximum numer of results may be restricted by the unit,
presumably due to transfer size consideration, so check the
returned number against that requested.








	
library_updating

	whether the music library is in the process of being updated.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
start_library_update(album_artist_display_option='')

	Start an update of the music library.


	Parameters

	album_artist_display_option (str [https://docs.python.org/3/library/stdtypes.html#str]) – a value for the album artist
compilation setting (see album_artist_display_option).










	
search_track(artist, album=None, track=None, full_album_art_uri=False)

	Search for an artist, an artist’s albums, or specific track.


	Parameters

	
	artist (str [https://docs.python.org/3/library/stdtypes.html#str]) – an artist’s name.


	album (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – an album name. Default None [https://docs.python.org/3/library/constants.html#None].


	track (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – a track name. Default None [https://docs.python.org/3/library/constants.html#None].


	full_album_art_uri (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the album art URI should be
absolute (i.e. including the IP address). Default False [https://docs.python.org/3/library/constants.html#False].






	Returns

	A SearchResult instance.










	
get_albums_for_artist(artist, full_album_art_uri=False)

	Get an artist’s albums.


	Parameters

	
	artist (str [https://docs.python.org/3/library/stdtypes.html#str]) – an artist’s name.


	full_album_art_uri – whether the album art URI should be
absolute (i.e. including the IP address). Default False [https://docs.python.org/3/library/constants.html#False].






	Returns

	A SearchResult instance.










	
get_tracks_for_album(artist, album, full_album_art_uri=False)

	Get the tracks of an artist’s album.


	Parameters

	
	artist (str [https://docs.python.org/3/library/stdtypes.html#str]) – an artist’s name.


	album (str [https://docs.python.org/3/library/stdtypes.html#str]) – an album name.


	full_album_art_uri – whether the album art URI should be
absolute (i.e. including the IP address). Default False [https://docs.python.org/3/library/constants.html#False].






	Returns

	A SearchResult instance.










	
album_artist_display_option

	The current value of the album artist compilation setting.

Possible values are:


	'WMP' - use Album Artists


	'ITUNES' - use iTunes® Compilations


	'NONE' - do not group compilations





See also

The Sonos FAQ [https://sonos.custhelp.com/app/answers/detail/a_id/3056/kw/artist%20compilation] on
compilation albums.



To change the current setting, call start_library_update and
pass the new setting.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
list_library_shares()

	Return a list of the music library shares.


	Returns

	The music library shares, which are strings of the form
'//hostname_or_IP/share_path'.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
delete_library_share(share_name)

	Delete a music library share.


	Parameters

	share_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the share to be deleted, which
should be of the form '//hostname_or_IP/share_path'.



	Raises

	SoCoUPnPException
















          

      

      

    




  

    
      
          
            
  
soco.services module

Classes representing Sonos UPnP services.

>>> import soco
>>> device = soco.SoCo('192.168.1.102')
>>> print(RenderingControl(device).GetMute([('InstanceID', 0),
...     ('Channel', 'Master')]))
{'CurrentMute': '0'}
>>> r = ContentDirectory(device).Browse([
...    ('ObjectID', 'Q:0'),
...    ('BrowseFlag', 'BrowseDirectChildren'),
...    ('Filter', '*'),
...    ('StartingIndex', '0'),
...    ('RequestedCount', '100'),
...    ('SortCriteria', '')
...    ])
>>> print(r['Result'])
<?xml version="1.0" ?><DIDL-Lite xmlns="urn:schemas-upnp-org:metadata ...
>>> for action, in_args, out_args in AlarmClock(device).iter_actions():
...    print(action, in_args, out_args)
...
SetFormat [Argument(name='DesiredTimeFormat', vartype='string'), Argument(
name='DesiredDateFormat', vartype='string')] []
GetFormat [] [Argument(name='CurrentTimeFormat', vartype='string'),
Argument(name='CurrentDateFormat', vartype='string')] ...






	
class soco.services.Action

	A UPnP Action and its arguments.

Create new instance of ActionBase(name, in_args, out_args)






	
class soco.services.Argument

	A UPnP Argument and its type.

Create new instance of ArgumentBase(name, vartype)






	
class soco.services.Vartype

	An argument type with default value and range.

Create new instance of VartypeBase(datatype, default, list, range)






	
class soco.services.Service(soco)

	A class representing a UPnP service.

This is the base class for all Sonos Service classes. This class has a
dynamic method dispatcher. Calls to methods which are not explicitly
defined here are dispatched automatically to the service action with the
same name.


	Parameters

	
	soco (SoCo) – A SoCo instance to which the UPnP Actions will be


	sent – 









	
soco = None

	The SoCo instance to which UPnP Actions are sent


	Type

	SoCo










	
service_type = None

	The UPnP service type.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
version = None

	The UPnP service version.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
base_url = None

	The base URL for sending UPnP Actions.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
control_url = None

	The UPnP Control URL.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
scpd_url = None

	The service control protocol description URL.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
event_subscription_url = None

	The service eventing subscription URL.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
cache = None

	A cache for storing the result of network calls. By default, this is
a TimedCache with a default timeout=0.






	
static wrap_arguments(args=None)

	Wrap a list of tuples in xml ready to pass into a SOAP request.


	Parameters

	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of (name, value) tuples specifying the
name of each argument and its value, eg
[('InstanceID', 0), ('Speed', 1)]. The value
can be a string or something with a string representation. The
arguments are escaped and wrapped in <name> and <value> tags.





Example

>>> from soco import SoCo
>>> device = SoCo('192.168.1.101')
>>> s = Service(device)
>>> print(s.wrap_arguments([('InstanceID', 0), ('Speed', 1)]))
<InstanceID>0</InstanceID><Speed>1</Speed>'










	
static unwrap_arguments(xml_response)

	Extract arguments and their values from a SOAP response.


	Parameters

	xml_response (str [https://docs.python.org/3/library/stdtypes.html#str]) – SOAP/xml response text (unicode,
not utf-8).



	Returns

	a dict of {argument_name: value} items.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
compose_args(action_name, in_argdict)

	Compose the argument list from an argument dictionary, with
respect for default values.


	Parameters

	
	action_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the action to be performed.


	in_argdict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Arguments as a dict, e.g.
{'InstanceID': 0, 'Speed': 1}. The values
can be a string or something with a string representation.






	Returns

	a list of (name, value) tuples.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]



	Raises

	
	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If this service does not support the action.


	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the argument lists do not match the action
signature.













	
build_command(action, args=None)

	Build a SOAP request.


	Parameters

	
	action (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an action (a string as specified in the
service description XML file) to be sent.


	args (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Relevant arguments as a list of (name,
value) tuples.






	Returns

	a tuple containing the POST headers (as a dict) and a
string containing the relevant SOAP body. Does not set
content-length, or host headers, which are completed upon
sending.



	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]










	
send_command(action, args=None, cache=None, cache_timeout=None, **kwargs)

	Send a command to a Sonos device.


	Parameters

	
	action (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of an action (a string as specified in the
service description XML file) to be sent.


	args (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Relevant arguments as a list of (name,
value) tuples, as an alternative to kwargs.


	cache (Cache) – A cache is operated so that the result will be
stored for up to cache_timeout seconds, and a subsequent
call with the same arguments within that period will be
returned from the cache, saving a further network call. The
cache may be invalidated or even primed from another thread
(for example if a UPnP event is received to indicate that
the state of the Sonos device has changed). If
cache_timeout is missing or None [https://docs.python.org/3/library/constants.html#None], the cache will use a
default value (which may be 0 - see
cache). By default, the cache
identified by the service’s
cache attribute will
be used, but a different cache object may be specified in
the cache parameter.


	kwargs – Relevant arguments for the command.






	Returns

	a dict of {argument_name, value} items.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Raises

	
	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If this service does not support the action.


	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the argument lists do not match the action
signature.


	SoCoUPnPException – if a SOAP error occurs.


	UnknownSoCoException – if an unknown UPnP error occurs.


	requests.exceptions.HTTPError – if an http error occurs.













	
handle_upnp_error(xml_error)

	Disect a UPnP error, and raise an appropriate exception.


	Parameters

	xml_error (str [https://docs.python.org/3/library/stdtypes.html#str]) – a unicode string containing the body of the
UPnP/SOAP Fault response. Raises an exception containing the
error code.










	
subscribe(requested_timeout=None, auto_renew=False, event_queue=None, strict=True)

	Subscribe to the service’s events.


	Parameters

	
	requested_timeout (int [https://docs.python.org/3/library/functions.html#int], optional) – If requested_timeout is
provided, a subscription valid for that
number of seconds will be requested, but not guaranteed. Check
timeout on return to find out
what period of validity is actually allocated.


	auto_renew (bool [https://docs.python.org/3/library/functions.html#bool]) – If auto_renew is True [https://docs.python.org/3/library/constants.html#True], the subscription will
automatically be renewed just before it expires, if possible.
Default is False [https://docs.python.org/3/library/constants.html#False].


	event_queue (Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) – a thread-safe queue object on
which received events will be put. If not specified,
a (Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) will be created and used.


	strict (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True and an Exception occurs during
execution, the Exception will be raised or, if False, the
Exception will be logged and the Subscription instance will be
returned. Default True [https://docs.python.org/3/library/constants.html#True].






	Returns

	an instance of
Subscription, representing the new
subscription. If config.EVENTS_MODULE has
been set to refer to events_twisted, a deferred will
be returned with the Subscription as its result and
deferred.subscription will be set to refer to the Subscription.



	Return type

	Subscription





To unsubscribe, call the unsubscribe()
method on the returned object.






	
actions

	The service’s actions with their arguments.


	Returns

	A list of Action namedtuples, consisting of
action_name (str), in_args (list of Argument namedtuples,
consisting of name and argtype), and out_args (ditto).



	Return type

	list(Action)





The return value looks like this:

[
    Action(
        name='GetMute',
        in_args=[
            Argument(name='InstanceID', ...),
            Argument(
                name='Channel',
                vartype='string',
                list=['Master', 'LF', 'RF', 'SpeakerOnly'],
                range=None
            )
        ],
        out_args=[
            Argument(name='CurrentMute, ...)
        ]
    )
    Action(...)
]





Its string representation will look like this:

GetMute(InstanceID: ui4, Channel: [Master, LF, RF, SpeakerOnly])

-> {CurrentMute: boolean}










	
iter_actions()

	Yield the service’s actions with their arguments.


	Yields

	Action – the next action.





Each action is an Action namedtuple, consisting of action_name
(a string), in_args (a list of Argument namedtuples consisting of name
and argtype), and out_args (ditto), eg:

Action(
    name='SetFormat',
    in_args=[
        Argument(name='DesiredTimeFormat', vartype=<Vartype>),
        Argument(name='DesiredDateFormat', vartype=<Vartype>)],
    out_args=[]
)










	
event_vars

	The service’s eventable variables.


	Returns

	A list of (variable name, data type) tuples.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list](tuple [https://docs.python.org/3/library/stdtypes.html#tuple])










	
iter_event_vars()

	Yield the services eventable variables.


	Yields

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] – a tuple of (variable name, data type).














	
class soco.services.AlarmClock(soco)

	Sonos alarm service, for setting and getting time and alarms.






	
class soco.services.MusicServices(soco)

	Sonos music services service, for functions related to 3rd party music
services.


	Parameters

	
	soco (SoCo) – A SoCo instance to which the UPnP Actions will be


	sent – 













	
class soco.services.AudioIn(soco)

	Sonos audio in service, for functions related to RCA audio input.


	Parameters

	
	soco (SoCo) – A SoCo instance to which the UPnP Actions will be


	sent – 













	
class soco.services.DeviceProperties(soco)

	Sonos device properties service, for functions relating to zones, LED
state, stereo pairs etc.


	Parameters

	
	soco (SoCo) – A SoCo instance to which the UPnP Actions will be


	sent – 













	
class soco.services.SystemProperties(soco)

	Sonos system properties service, for functions relating to
authentication etc.


	Parameters

	
	soco (SoCo) – A SoCo instance to which the UPnP Actions will be


	sent – 













	
class soco.services.ZoneGroupTopology(soco)

	Sonos zone group topology service, for functions relating to network
topology, diagnostics and updates.


	Parameters

	
	soco (SoCo) – A SoCo instance to which the UPnP Actions will be


	sent – 













	
class soco.services.GroupManagement(soco)

	Sonos group management service, for services relating to groups.


	Parameters

	
	soco (SoCo) – A SoCo instance to which the UPnP Actions will be


	sent – 













	
class soco.services.QPlay(soco)

	Sonos Tencent QPlay service (a Chinese music service)


	Parameters

	
	soco (SoCo) – A SoCo instance to which the UPnP Actions will be


	sent – 













	
class soco.services.ContentDirectory(soco)

	UPnP standard Content Directory service, for functions relating to
browsing, searching and listing available music.






	
class soco.services.MS_ConnectionManager(soco)

	UPnP standard connection manager service for the media server.






	
class soco.services.RenderingControl(soco)

	UPnP standard rendering control service, for functions relating to
playback rendering, eg bass, treble, volume and EQ.






	
class soco.services.MR_ConnectionManager(soco)

	UPnP standard connection manager service for the media renderer.






	
class soco.services.AVTransport(soco)

	UPnP standard AV Transport service, for functions relating to transport
management, eg play, stop, seek, playlists etc.






	
class soco.services.Queue(soco)

	Sonos queue service, for functions relating to queue management, saving
queues etc.






	
class soco.services.GroupRenderingControl(soco)

	Sonos group rendering control service, for functions relating to group
volume etc.








          

      

      

    




  

    
      
          
            
  
soco.snapshot module

Functionality to support saving and restoring the current Sonos state.

This is useful for scenarios such as when you want to switch to radio
or an announcement and then back again to what was playing previously.


Warning

Sonos has introduced control via Amazon Alexa. A new cloud queue is
created and at present there appears no way to restart this
queue from snapshot. Currently if a cloud queue was playing it will
not restart.




Warning

This class is designed to be created used and destroyed. It is not
designed to be reused or long lived. The init sets up defaults for
one use.




	
class soco.snapshot.Snapshot(device, snapshot_queue=False)

	A snapshot of the current state.


Note

This does not change anything to do with the configuration
such as which group the speaker is in, just settings that impact
what is playing, or how it is played.

List of sources that may be playing using root of media_uri:


x-rincon-queue: playing from Queue

x-sonosapi-stream: playing a stream (eg radio)

x-file-cifs: playing file

x-rincon: slave zone (only change volume etc. rest from
coordinator)






	Parameters

	
	device (SoCo) – The device to snapshot


	snapshot_queue (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the queue should be snapshotted.
Defaults to False [https://docs.python.org/3/library/constants.html#False].









Warning

It is strongly advised that you do not snapshot the queue unless
you really need to as it takes a very long time to restore large
queues as it is done one track at a time.




	
snapshot()

	Record and store the current state of a device.


	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the device is a coordinator, False [https://docs.python.org/3/library/constants.html#False] otherwise.
Useful for determining whether playing an alert on a device
will ungroup it.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
restore(fade=False)

	Restore the state of a device to that which was previously saved.

For coordinator devices restore everything. For slave devices
only restore volume etc., not transport info (transport info
comes from the slave’s coordinator).


	Parameters

	fade (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether volume should be faded up on restore.
















          

      

      

    




  

    
      
          
            
  
soco.soap module

Classes for handling SoCo’s basic SOAP requirements.

This module does not handle anything like the full SOAP Specification [http://www.w3.org/TR/soap/] , but is enough for SoCo’s needs. Sonos uses
SOAP for UPnP communications, and for communication with third party music
services.


	
exception soco.soap.SoapFault(faultcode, faultstring, detail=None)

	An exception encapsulating a SOAP Fault.


	Parameters

	
	faultcode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The SOAP faultcode.


	faultstring (str [https://docs.python.org/3/library/stdtypes.html#str]) – The SOAP faultstring.


	detail (Element [https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element]) – The SOAP fault
detail, as an ElementTree
Element [https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element]. Defaults to None [https://docs.python.org/3/library/constants.html#None].













	
class soco.soap.SoapMessage(endpoint, method, parameters=None, http_headers=None, soap_action=None, soap_header=None, namespace=None, **request_args)

	A SOAP Message representing a remote procedure call.

Uses the Requests [http://www.python-requests.org/en/latest/] library
for communication with a SOAP server.


	Parameters

	
	endpoint (str [https://docs.python.org/3/library/stdtypes.html#str]) – The SOAP endpoint URL for this client.


	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the method to call.


	parameters (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of (name, value) tuples containing
the parameters to pass to the method. Default None [https://docs.python.org/3/library/constants.html#None].


	http_headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dict in the form {'Header': 'Value,..}
containing http headers to use for the http request.
Content-type and SOAPACTION headers will be created
automatically, so do not include them here. Use this, for
example, to set a user-agent.


	soap_action (str [https://docs.python.org/3/library/stdtypes.html#str]) – The value of the SOAPACTION header.
Default ‘None`.


	soap_header (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string representation of the XML to be
used for the SOAP Header. Default None [https://docs.python.org/3/library/constants.html#None].


	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – The namespace URI to use for the method and
parameters. None [https://docs.python.org/3/library/constants.html#None], by default.


	**request_args – Other keyword parameters will be passed to the
Requests request which is used to handle the http
communication. For example, a timeout value can be set.









	
prepare_headers(http_headers, soap_action)

	Prepare the http headers for sending.

Add the SOAPACTION header to the others.


	Parameters

	
	http_headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dict in the form {'Header': 'Value,..}
containing http headers to use for the http request.


	soap_action (str [https://docs.python.org/3/library/stdtypes.html#str]) – The value of the SOAPACTION header.






	Returns

	headers including the SOAPACTION header.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
prepare_soap_header(soap_header)

	Prepare the SOAP header for sending.

Wraps the soap header in appropriate tags.


	Parameters

	soap_header (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string representation of the XML to be
used for the SOAP Header



	Returns

	The soap header wrapped in appropriate tags.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
prepare_soap_body(method, parameters, namespace)

	Prepare the SOAP message body for sending.


	Parameters

	
	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the method to call.


	parameters (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of (name, value) tuples containing
the parameters to pass to the method.


	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – The XML namespace to use for the method.






	Returns

	A properly formatted SOAP Body.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
prepare_soap_envelope(prepared_soap_header, prepared_soap_body)

	Prepare the SOAP Envelope for sending.


	Parameters

	
	prepared_soap_header (str [https://docs.python.org/3/library/stdtypes.html#str]) – A SOAP Header prepared by
prepare_soap_header


	prepared_soap_body (str [https://docs.python.org/3/library/stdtypes.html#str]) – A SOAP Body prepared by
prepare_soap_body






	Returns

	A prepared SOAP Envelope



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
prepare()

	Prepare the SOAP message for sending to the server.






	
call()

	Call the SOAP method on the server.


	Returns

	the decapusulated SOAP response from the server,
still encoded as utf-8.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]



	Raises

	
	SoapFault – if a SOAP error occurs.


	HTTPError – if an http error occurs.


	xml.etree.ElementTree.ParseError [https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.ParseError] – If the response cannot be parsed as XML



















          

      

      

    




  

    
      
          
            
  
soco.utils module

This class contains utility functions used internally by SoCo.


	
soco.utils.really_unicode(in_string)

	Make a string unicode. Really.

Ensure in_string is returned as unicode through a series of
progressively relaxed decodings.


	Parameters

	in_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string to convert.



	Returns

	Unicode.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]



	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]










	
soco.utils.really_utf8(in_string)

	Encode a string with utf-8. Really.


First decode in_string via really_unicode to ensure it can
successfully be encoded as utf-8. This is required since just calling
encode on a string will often cause Python 2 to perform a coerced strict
auto-decode as ascii first and will result in a UnicodeDecodeError [https://docs.python.org/3/library/exceptions.html#UnicodeDecodeError] being
raised. After really_unicode returns a safe unicode string, encode as
utf-8 and return the utf-8 encoded string.





	Parameters

	in_string – The string to convert.










	
soco.utils.camel_to_underscore(string)

	Convert camelcase to lowercase and underscore.

Recipe from http://stackoverflow.com/a/1176023


	Parameters

	string (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string to convert.



	Returns

	The converted string.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
soco.utils.prettify(unicode_text)

	Return a pretty-printed version of a unicode XML string.

Useful for debugging.


	Parameters

	unicode_text (str [https://docs.python.org/3/library/stdtypes.html#str]) – A text representation of XML (unicode,
not utf-8).



	Returns

	A pretty-printed version of the input.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
soco.utils.show_xml(xml)

	Pretty print an ElementTree [https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.ElementTree] XML object.


	Parameters

	xml (ElementTree [https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.ElementTree]) – The
ElementTree [https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.ElementTree] to pretty print






Note

This is used a convenience function used during development. It
is not used anywhere in the main code base.








	
class soco.utils.deprecated(since, alternative=None, will_be_removed_in=None, alternative_not_referable=False)

	A decorator for marking deprecated objects.

Used internally by SoCo to cause a warning to be issued when the object
is used, and marks the object as deprecated in the Sphinx documentation.


	Parameters

	
	since (str [https://docs.python.org/3/library/stdtypes.html#str]) – The version in which the object is deprecated.


	alternative (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of an alternative object to use


	will_be_removed_in (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The version in which the object is
likely to be removed.


	alternative_not_referable (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) Indicate that
alternative cannot be used as a sphinx reference








Example

@deprecated(since="0.7", alternative="new_function")
def old_function(args):
    pass










	
soco.utils.url_escape_path(path)

	Escape a string value for a URL request path.


	Parameters

	str – The path to escape



	Returns

	The escaped path



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]





>>> url_escape_path("Foo, bar & baz / the hackers")
u'Foo%2C%20bar%20%26%20baz%20%2F%20the%20hackers'










	
soco.utils.first_cap(string)

	Return upper cased first character








          

      

      

    




  

    
      
          
            
  
soco.xml module

This class contains XML related utility functions.


	
soco.xml.NAMESPACES = {'': 'urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/', 'dc': 'http://purl.org/dc/elements/1.1/', 'ms': 'http://www.sonos.com/Services/1.1', 'r': 'urn:schemas-rinconnetworks-com:metadata-1-0/', 'upnp': 'urn:schemas-upnp-org:metadata-1-0/upnp/'}

	Commonly used namespaces, and abbreviations, used by ns_tag.






	
soco.xml.ns_tag(ns_id, tag)

	Return a namespace/tag item.


	Parameters

	
	ns_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – A namespace id, eg "dc" (see NAMESPACES)


	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – An XML tag, eg "author"






	Returns

	A fully qualified tag.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]





The ns_id is translated to a full name space via the NAMESPACES
constant:

>>> xml.ns_tag('dc','author')
'{http://purl.org/dc/elements/1.1/}author'












          

      

      

    




  

    
      
          
            
  
SoCo releases


System Message: WARNING/2 (/home/docs/checkouts/readthedocs.org/user_builds/soco/checkouts/v0.27.1/doc/releases/index.rst, line 7)

toctree contains reference to nonexisting document ‘releases/0.27’





	SoCo 0.26 Release Notes

	SoCo 0.25 Release Notes

	SoCo 0.24 Release Notes

	SoCo 0.23 release notes

	SoCo 0.22 release notes

	SoCo 0.21 release notes

	SoCo 0.20 release notes

	SoCo 0.19 release notes

	SoCo 0.18 release notes

	SoCo 0.17 release notes

	SoCo 0.16 release notes

	SoCo 0.15 release notes

	SoCo 0.14 release notes

	SoCo 0.13 release notes

	SoCo 0.12 release notes

	SoCo 0.11.1 release notes

	SoCo 0.11 release notes

	SoCo 0.10 release notes

	SoCo 0.9 release notes

	SoCo 0.8 release notes

	SoCo 0.7 release notes

	SoCo 0.6 release notes








          

      

      

    




  

    
      
          
            
  
SoCo 0.26 Release Notes

SoCo 0.26.0 (Released on 2022-01-24), contains new features as well as
internal improvements.

In particular this release reintroduces experimental support for music
services. Testing and issue reporting would be appreciated.

Please see the GitHub release page for further details:
https://github.com/SoCo/SoCo/releases/tag/v0.26.0




          

      

      

    




  

    
      
          
            
  
SoCo 0.25 Release Notes

SoCo 0.25.0 (Released on 2021-12-03), contains new features as well as internal improvements.

Please see the GitHub release for further details:
https://github.com/SoCo/SoCo/releases/tag/v0.25.0




          

      

      

    




  

    
      
          
            
  
SoCo 0.24 Release Notes

SoCo 0.24.0 (Released on 2021-09-01), contains new features as well as internal improvements.

Please see the GitHub release for further details:
https://github.com/SoCo/SoCo/releases/tag/v0.24.0




          

      

      

    




  

    
      
          
            
  
SoCo 0.23 release notes

SoCo 0.23 (Released on 2021-07-16), contains a number of new features as well as internal improvements.


New Features and Improvements


	Add a contactable() function to filter out devices that are not reachable.


	Add end_direct_control_session() method to stop remote control sessions (e.g., Spotify Connect).


	Add get_current_media_info() method, useful for determining details of radio streams.


	Add plugin for playback of Spotify and Tidal ShareLinks (experimental).


	Restore compatibility for Sonos S1 systems running firmware versions earlier than 10.1.






Developer/Code Improvements


	Logging severity has been adjusted in some areas to reduce the volume of logging output.






Complete list of significant changes since v0.22

See: https://github.com/SoCo/SoCo/milestone/19?closed=1





          

      

      

    




  

    
      
          
            
  
SoCo 0.22 release notes

SoCo 0.22 (Released on 2021-04-17), contains a number of new features as well as internal improvements.


New Features and Improvements


	Add an available_actions property to determine what actions are currently permitted on a player.


	Add the ability to remove alarms from the system by Alarm ID.


	Add shuffle and repeat as directly gettable/settable properties of a player.


	Add the ability to specify a track number when using seek.


	Add events handling using asyncio, as an alternative to the standard and Twisted events approaches.






Developer/Code Improvements


	We’ve made a broad set of changes to remove legacy code related to Python 2 compatibility.






Complete list of significant changes since v0.21

See: https://github.com/SoCo/SoCo/milestone/18?closed=1





          

      

      

    




  

    
      
          
            
  
SoCo 0.21 release notes

SoCo 0.21 (Released on 2021-01-17), contains significant improvements to the speaker discovery process, which should address most of the common problems that are encountered.

Multi-household Sonos systems can now be discovered and controlled.

The AudioIn service has been added, providing access to Line In operations and events.

A number of additional miscellaneous speaker state controls have been provided, for speaker buttons, fixed volume output, and Trueplay. The battery status of Sonos Move speakers can also now be obtained. The music_source property on SoCo objects provides a convenient way to determine what type of source is being played by a speaker.

SoCo 0.21 is now fully Python 3.9 compatible, requires Python 3.5+, and is no longer compatible with Python 2.x.


New Features and Improvements


	Add support for network scan discovery, including allowing multi-household systems to be discovered: pull requests #733 [https://github.com/SoCo/SoCo/pull/733],  #755 [https://github.com/SoCo/SoCo/pull/755], and #770 [https://github.com/SoCo/SoCo/pull/770].


	Add the AudioIn service for access to Line In operations and events: PR #777 [https://github.com/SoCo/SoCo/pull/777].


	Add the ability to inspect and set  Fixed Volume output: PR #773 [https://github.com/SoCo/SoCo/pull/773].


	Add the ability to inspect and set whether speaker buttons are enabled: PR #774 [https://github.com/SoCo/SoCo/pull/774].


	Add the ability to inspect and set  Trueplay enablement: PR #775 [https://github.com/SoCo/SoCo/pull/775].


	Add the ability to determine the battery state of Sonos Move speakers: PR #756 [https://github.com/SoCo/SoCo/pull/756].






Bug Fixes


	Improve zone group state caching to accommodate multi-household systems: PR #656 [https://github.com/SoCo/SoCo/pull/656]. (Note: possible breaking change: if you’ve previously been setting the soco.core.zone_group_state_shared_cache.enabled property, this property is no longer global but is instead now a private property of SoCo instances.)


	When restoring snapshots, do not try to restore bass/treble/loudness on devices with fixed volume enabled: PR #772 [https://github.com/SoCo/SoCo/pull/772].


	Ensure that all relevant NICs and IP addresses are included in multicast speaker discovery: PR #767 [https://github.com/SoCo/SoCo/pull/767].






Developer Improvements


	Numerous fixes to allow the documentation to build cleanly: PR #753 [https://github.com/SoCo/SoCo/pull/753].


	Full Python 3.9 compatibility, including updated check jobs: PRs #745 [https://github.com/SoCo/SoCo/pull/745] and #751 [https://github.com/SoCo/SoCo/pull/751].


	Code changes to allow Pylint and Black to be updated to their most recent versions: PRs #748 [https://github.com/SoCo/SoCo/pull/748] and #749 [https://github.com/SoCo/SoCo/pull/749].






List of Changes Associated with the 0.21 Milestone

See: https://github.com/SoCo/SoCo/milestone/17?closed=1





          

      

      

    




  

    
      
          
            
  
SoCo 0.20 release notes

SoCo 0.20 is the latest increment to the SoCo module. Among the additions
this time are support for adding stereo pairs, proper categorization of Sonos
Amp as a playbar to add proper support for ‘night sound’ and ‘speech
enhancement’ and finally a fix for a long running issue where vendor extended
DIDL-Lite classes would cause events to crash without specific code added for
each one. See the full list of additions and bugfixes below.

SoCo (Sonos Controller) [http://python-soco.com/] is a Python
package that allows you to programmatically control Sonos speakers.


New Features and Improvements


	Add support for creating and separating stereo pairs of speakers. Note: works
with dissimilar Sonos speakers if required. Pull request #704 [https://github.com/SoCo/SoCo/pull/704].


	Add support for autogenerating vendor extended DIDL-Lite classes. Pull request
#713 [https://github.com/SoCo/SoCo/pull/713]. This should fix all the
problems where SoCo would crash if some vendor specific data type is
unknown.


	Categorize Sonos Amp as a playbar in order to provide support for ‘night
sound’ and ‘speech enhancement’. Pull request #721 [https://github.com/SoCo/SoCo/pull/721]


	If port 1400 is in use, the next available 100 ports will be tried. Pull
request #724 [https://github.com/SoCo/SoCo/pull/724].






Bugfixes


	Fix bug where data_structures_upgrade would fail on items that has no uri.
Issue #702 [https://github.com/SoCo/SoCo/issues/702].


	Process share browsing correctly. Issue #717 [https://github.com/SoCo/SoCo/issues/717]. Credit to @Sonosy for the fix.






Developer improvements


	Format all soco main, test and example code with the black code formatter
(https://github.com/psf/black) and make it mandatory going forward including a
TravisCI check. Pull request #706 [https://github.com/SoCo/SoCo/pull/706].


	Improve test_remove_playlist_bad_id() to handle the case of no
existing playlists. Pull request #726 [https://github.com/SoCo/SoCo/pull/726], fixes issue #725 [https://github.com/SoCo/SoCo/issues/725].








          

      

      

    




  

    
      
          
            
  
SoCo 0.19 release notes

SoCo 0.19 is the latest increment to the SoCo module. Among the
additions this time are added methods for library share handling, new
methods for relative and group volume handling and a new DIDL-Lite
class used for certain podcasts. See the full list of additions and
bugfixes below.

SoCo (Sonos Controller) [http://python-soco.com/] is a Python
package that allows you to programmatically control Sonos speakers.


New Features and Improvements


	Added class DidlRecentShow to the
data_structures module to implement the
added object.item.audioItem.musicTrack.recentShow DIDL-Lite
object type. Used for podcasts etc. Pull request #677 [https://github.com/SoCo/SoCo/pull/677].


	Add support for Python 3.8, pull reques #679 [https://github.com/SoCo/SoCo/pull/679]


	Add methods
list_library_shares() and
delete_library_share() to
MusicLibrary. Partially addresses
issue #678 [https://github.com/SoCo/SoCo/issues/678].


	Add a balance property to the
SoCo class, allowing get/set of speaker
balance, pull request #693 [https://github.com/SoCo/SoCo/pull/693]. Addresses issue #692 [https://github.com/SoCo/SoCo/issues/692]. Credit to @tephlon for
the idea and the majority of the implementation.


	Add the set_relative_volume() method to the
SoCo class, pull request #687 [https://github.com/SoCo/SoCo/pull/687]


	Add unit test for
soco.music_library.MusicLibrary.delete_library_share()
method, pull request #694 [https://github.com/SoCo/SoCo/pull/694]


	Add deprecation warning concerning the removal of Python 2.7
support, pull request #697 [https://github.com/SoCo/SoCo/pull/697]


	Add group volume operations, pull request #688 [https://github.com/SoCo/SoCo/pull/688]






Bugfixes


	Fixed broken link in loudness docstring, issue #671 [https://github.com/SoCo/SoCo/issues/671]


	In soco.events, fixed bug affecting some users in code to
determine system’s own IP address. Some systems requires a valid
port to be used (not port 0), so we use
config.EVENT_LISTENER_PORT. Pull request #680 [https://github.com/SoCo/SoCo/pull/680].


	Copy metadata from DidlItem to
MusicServiceItem in
get_queue() and events. Pull request #589 [https://github.com/SoCo/SoCo/pull/589]. Closes issues #535 [https://github.com/SoCo/SoCo/issues/535], #547 [https://github.com/SoCo/SoCo/issues/547] and #552 [https://github.com/SoCo/SoCo/issues/552].


	Fixed a bug (avoid trying to iterate a None) in the
discovery module, commit c8e4a24 [https://github.com/SoCo/SoCo/commit/c8e4a246addbc8891752cf65a4933a9db6ff1022]








          

      

      

    




  

    
      
          
            
  
SoCo 0.18 release notes

SoCo 0.18 adds lots of small improvements to the events
functionality plus a major addition in the form of allowing choice of
how the event listener is implemented. Besides that there is a logging
improvement. Details are below.

SoCo (Sonos Controller) [http://python-soco.com/] is a Python
package that allows you to programmatically control Sonos speakers.


New Features and Improvements


	Allow the user to choose how the event listener is implemented and a
lot of other event code improvements as outlined below. (Pull
request #602 [https://github.com/SoCo/SoCo/pull/602]).


	A major feature addition is to allow the user to choose how the
event listener is implemented. The default is for the event
listener to use the requests library and run in a thread. This
update allows the user to run the event listener using the
twisted.internet library, by setting the config.EVENTS_MODULE
module to point to the soco.events_twisted module. See
the example in events_twisted.


	Stops the event listener when the last active subscription is
unsubscribed.


	Raise soco.exceptions.SoCoException on an attempt to
subscribe a subscription more than once (use
soco.events.Subscription.renew() instead).


	Allow an optional strict parameter for
soco.events.Subscription.subscribe(),
soco.events.Subscription.renew() and
soco.events.Subscription.unsubscribe(). If set to False,
Exceptions will be logged rather than raised. Default: True


	Upon autorenewal, call soco.events.Subscription.renew() with
the strict flag set to False, so that any Exception is logged, not
raised. This is because there is no calling code to catch an
Exception.


	Provide for calling code to set
soco.events.Subscription.auto_renew_fail to refer to a
callback function. If an Exception occurs upon autorenewal, this
callback will be called with the Exception as the sole parameter.


	If an Exception occurs upon
subscribe() or
renew(), cancel the subscription,
unless the Exception was a SoCoException on
subscribe(). For example, if an Exception occurs
because the network went down, the subscription will be canceled.


	Use a threading lock with subscribe(),
renew() and unsubscribe(), because
autorenewal occurs from a thread.






	Add a simple
soco.data_structures.DidlPlaylistContainerTracklist class to
the soco.data_structures module (Pull request #645 [https://github.com/SoCo/SoCo/pull/645]). The class is used by Sonos
when Sonos Speakers are controlled by Spotify Connect. The absence of
the class from the data_structures module causes errors. This fixes the error
message reported in pull request #639 [https://github.com/SoCo/SoCo/pull/639].


	Remove logging of UPnP failures (Pull request #640 [https://github.com/SoCo/SoCo/pull/640]








          

      

      

    




  

    
      
          
            
  
SoCo 0.17 release notes

SoCo 0.17 adds a single new feature and updates SoCo to work on
top of the API changes that Sonos introduced with the 10.1 software
update.


Warning

The changes to SoCo to accommodate the Sonos API changes as of
version 10.1 are backwards incompatible. This means that if
SoCo is updated to version 0.17, then it will be necessary to
update the Sonos software to ≥10.1 at the same time.



SoCo (Sonos Controller) [http://python-soco.com/] is a simple Python class
that allows you to programmatically control Sonos speakers.


New Features and Improvements


	Add the is_soundbar property to the SoCo class to indicate
whether or not the current instance represents a Play:Bar, a
Play:Base, or a Beam and, when appropriate, enable features like
Night and Dialog mode. (Pull request #637 [https://github.com/SoCo/SoCo/pull/637]). (Fixes #633 [https://github.com/SoCo/SoCo/issues/633]).






Bugfixes


	Fix discovery which was broken as a consequence of API changes in
Sonos software version 10.1. (Commit f532cad [https://github.com/SoCo/SoCo/commit/f532cadb41179d3e030a6fc21bc32f7773070169])


	Fix parsing of favorites which was broken as a consequence of API
changes in Sonos software version 10.1. (Commit 58efcb6 [https://github.com/SoCo/SoCo/commit/58efcb691128583922477825c5801bc83d7fe95f])








          

      

      

    




  

    
      
          
            
  
SoCo 0.16 release notes

SoCo 0.16 is a new version of the SoCo library. This release adds new
features and fixes several bugs.

SoCo (Sonos Controller) [http://python-soco.com/] is a simple Python class
that allows you to programmatically control Sonos speakers.


New Features and Improvements


	Allow the user to configure the event listener IP address that is sent to the
Sonos speakers. The default is to auto detect, but it can now be overridden.
This allows for more complex network configurations (e.g. using Docker
containers) to be supported.
(#604 [https://github.com/SoCo/SoCo/pull/604])


	The play_uri method now accepts title arguments that need XML escaping.
(#605 [https://github.com/SoCo/SoCo/pull/605])


	A harmless “Could not handle track info” warning has been removed.
(#606 [https://github.com/SoCo/SoCo/pull/606])


	Let from_didl_string throw DIDLMetadataErrors, allowing them to be
caught in the event handling code.
(#601 [https://github.com/SoCo/SoCo/pull/601])


	Added support for object.item.audioItem.audioBook
(#618 [https://github.com/SoCo/SoCo/pull/618])






Bugfixes


	Fix DidlMusicAlbum inheriting fields from DidlAudioItem instead of
DidlAlbum (#592 [https://github.com/SoCo/SoCo/pull/592])








          

      

      

    




  

    
      
          
            
  
SoCo 0.15 release notes

SoCo 0.15 is a new version of the SoCo library. This release adds new
features and fixes several bugs.

SoCo (Sonos Controller) [http://python-soco.com/] is a simple Python class
that allows you to programmatically control Sonos speakers.


New Features and Improvements


	Add __enter__ and __exit__ methods to Subscription, for automatic
unsubscription in a with-block
(#563 [https://github.com/SoCo/SoCo/pull/563])


	Add __enter__ and __exit__ methods to Snapshot, for automatic snapshot
and restore in a with block (#588 [https://github.com/SoCo/SoCo/pull/588])


	Handle default value / allowed value range in Service.iter_actions and
format the resulting actions
(#573 [https://github.com/SoCo/SoCo/pull/573])


	Allow keyword arguments in Service commands
(#573 [https://github.com/SoCo/SoCo/pull/573])


	Auto deploy new tagged releases to PyPI
(#593 [https://github.com/SoCo/SoCo/pull/593])


	Documentation updates (#580 [https://github.com/SoCo/SoCo/pull/580])






Bugfixes


	Prevent parsing exceptions during event handling from killing the exception
thread. Instead, return a DidlFault, which will reraise the exception
when the user tries to use it
(#567 [https://github.com/SoCo/SoCo/pull/567])


	Fixed the set returned by discover() being modified later
(#582 [https://github.com/SoCo/SoCo/pull/582])


	Fixed regression in send_command
(#577 [https://github.com/SoCo/SoCo/pull/577])


	Fixed regression due to removed deprecated methods
(#596 [https://github.com/SoCo/SoCo/pull/596])


	Improved error handling with speakers not associated to a room
(#555 [https://github.com/SoCo/SoCo/pull/555])






Backwards Compatability


	Dropped support for Python 3.3 #527
(#527 [https://github.com/SoCo/SoCo/pull/527])


	Removed the deprecated methods which were moved in 0.12 from core.py to
music_library.py and move the assoctiated tests
(#542 [https://github.com/SoCo/SoCo/pull/542])








          

      

      

    




  

    
      
          
            
  
SoCo 0.14 release notes

SoCo 0.14 is a new version of the SoCo library. This release adds new
features and fixes several bugs.

SoCo (Sonos Controller) [http://python-soco.com/] is a simple Python class
that allows you to programmatically control Sonos speakers.


New Features and Improvements


	Add support for Sonos favorites, which can now be browsed and played through
the usual methods. (#478 [https://github.com/SoCo/SoCo/pull/478])


	Revised the play_local_files examples including a off-by-one bug fix,
configuration as command line argument, IP address auto detection and more
robust Sonos player selection.
(#570 [https://github.com/SoCo/SoCo/pull/570])


	Allow keyword arguments in Service commands
(#573 [https://github.com/SoCo/SoCo/pull/573])


	Handle QueueID properly in event xml. (#546 [https://github.com/SoCo/SoCo/pull/546])


	Further documentation updates (#540 [https://github.com/SoCo/SoCo/pull/#540],
#569 [https://github.com/SoCo/SoCo/pull/569])






Bugfixes


	Small bugfix to stop an error where None would be returned by
metadata.findtext. Instead, an empty string is returned.  (#539 [https://github.com/SoCo/SoCo/pull/539])


	Fix a race that could lead to events being missed shortly after a
subscription was started. (#533 [https://github.com/SoCo/SoCo/pull/533])


	Don’t throw exceptions when parsing metadata with missing/empty tags, to fix
event errors. (#467 [https://github.com/SoCo/SoCo/pull/467])








          

      

      

    




  

    
      
          
            
  
SoCo 0.13 release notes

SoCo 0.13 is a new version of the SoCo library. This release adds new
features and fixes several bugs.

SoCo (Sonos Controller) [http://python-soco.com/] is a simple Python class
that allows you to programmatically control Sonos speakers.


New Features and Improvements


	The IP address used by the events listener can be configured (#444 [https://github.com/SoCo/SoCo/pull/444])


	Add support for night mode (#421 [https://github.com/SoCo/SoCo/pull/421])
and dialog mode (#422 [https://github.com/SoCo/SoCo/pull/422]) on devices
supporting the respective feature.


	Add queue-able data structures for the music service items (#455 [https://github.com/SoCo/SoCo/pull/455])


	Add a method for queueing multiple items with a single request (#470 [https://github.com/SoCo/SoCo/pull/470])


	Add methods to get and set the uri(s) of a DidlObject. (#482 [https://github.com/SoCo/SoCo/pull/482])


	Add support for line in from other speakers (#460 [https://github.com/SoCo/SoCo/pull/460])


	Enhance add_to_queue() to with optional position argument (#471 [https://github.com/SoCo/SoCo/pull/471])


	Added by_name function to discovery to be able to get a device by
player_name (#487 [https://github.com/SoCo/SoCo/pull/487])


	allow choice of how to play streams in play_uri (override Sonos default
with force_radio=True) (#491 [https://github.com/SoCo/SoCo/pull/491])


	Added ramp_to_volume() method to smoothly change the volume (#506 [https://github.com/SoCo/SoCo/pull/506])


	Added FAQ, documentation and two examples to explain using SoCo’s Snapshot
function (#493 [https://github.com/SoCo/SoCo/pull/493])


	Update documentation for add_uri_to_queue (#503 [https://github.com/SoCo/SoCo/pull/503])


	Added a FAQ section to the docs with play_uri and play local files answers
(#481 [https://github.com/SoCo/SoCo/pull/481])


	A few queue related micro examples was added to the examples page in the docs
(#484 [https://github.com/SoCo/SoCo/pull/484])


	Further documentation updates (#435 [https://github.com/SoCo/SoCo/pull/435], #436 [https://github.com/SoCo/SoCo/pull/436], #459 [https://github.com/SoCo/SoCo/pull/459], #476 [https://github.com/SoCo/SoCo/pull/476], #489 [https://github.com/SoCo/SoCo/pull/489], #496 [https://github.com/SoCo/SoCo/pull/496], #522 [https://github.com/SoCo/SoCo/pull/522])






Bugfixes


	Fixes an issue where restarting an application that had subscribed to events
sometimes causes an error when the events are delivered to the new instance
(#437 [https://github.com/SoCo/SoCo/pull/437])


	Fixes an issue where multiple threads trying to subscribe to events in
parallel would sometimes cause SoCo to attempt to create multiple event
listener servers and fail on socket.bind(). (#437 [https://github.com/SoCo/SoCo/pull/437])


	Fixes an issue where SoCo would not recognize
object.container.playlistContainer.sonos-favorite when receiving events
(#438 [https://github.com/SoCo/SoCo/pull/438]).


	Fixes a bug in play_uri where it would not play a http or https prefixed
radio stream due to a change in the Sonos API (issue #434). This change
fixes it by replacing the two http type prefixes with Sonos’
x-rincon-mp3radio:// prefix (#434 [https://github.com/SoCo/SoCo/issues/434], #443 [https://github.com/SoCo/SoCo/pull/443])


	Fixes an exception being raised on Windows with discover. The error was
caused by socket.getsockname raising an exception on Windows with and
unconnected unbound socket. Fixed by now simply logging the sockets. (#445 [https://github.com/SoCo/SoCo/issues/445])


	Change to use SoCo method to determine coordinator in Snapshot (#529 [https://github.com/SoCo/SoCo/pull/529], #519 [https://github.com/SoCo/SoCo/issues/519])


	Prevent error when queue started from Alexa and using snapshot. Currently
there is no was to restart a cloud queue from SoCo, this PR just prevents
Snapshot causing an error. (#530 [https://github.com/SoCo/SoCo/pull/530],
#521 [https://github.com/SoCo/SoCo/issues/521])


	Fix add_multiple_to_queue fails with too many items (#488 [https://github.com/SoCo/SoCo/pull/488])


	Fixed log level (#534 [https://github.com/SoCo/SoCo/pull/534])






Backwards Compatability


	Dropped support for Python 2.6 (#325 [https://github.com/SoCo/SoCo/issues/325], #526 [https://github.com/SoCo/SoCo/pull/526]) and added support for 3.6 (#528 [https://github.com/SoCo/SoCo/pull/528])








          

      

      

    




  

    
      
          
            
  
SoCo 0.12 release notes

SoCo 0.12 is a new version of the SoCo library. This release adds new
features and fixes several bugs.

SoCo (Sonos Controller) [http://python-soco.com/] is a simple Python class
that allows you to programmatically control Sonos speakers.


New Features and Improvements


	New MusicService class for access to all the music services known to
Sonos. Note that some of this code is still unstable, and in particular
the data structures returned by methods such as get_metadata may change
in future. (#262 [https://github.com/SoCo/SoCo/pull/262],
#358 [https://github.com/SoCo/SoCo/pull/358])


	Add information to the docs about how to put SoCo in the Python path, for
test execution (#327 [https://github.com/SoCo/SoCo/pull/327],
#319 [https://github.com/SoCo/SoCo/issues/319])


	added to_dict() / from_dict() to DidlResource
(#330 [https://github.com/SoCo/SoCo/pull/330],
#318 [https://github.com/SoCo/SoCo/issues/318])


	All tests have been moved from the unittests directory to the tests
directory (#336 [https://github.com/SoCo/SoCo/pull/336])


	For developers, more make targets, and a better sdist build
(#346 [https://github.com/SoCo/SoCo/pull/346])


	Added discovery.any_soco(), for when you need a SoCo instance, but
you don’t care which. This is slightly better than the traditional
device = soco.discover().pop() since it will return an existing instance
if one is available, without sending discovery packets
(#262 [https://github.com/SoCo/SoCo/pull/262])


	Modified DidlObject.to_dict() so that any associated resources list will
be also returned as a list of dictionaries instead of returning a list of
DidlResource objects. (#340 [https://github.com/SoCo/SoCo/pull/340],
#338 [https://github.com/SoCo/SoCo/issues/338])


	Added a sonosdump tool in dev_tools, which can print out the various
UPnP methods which Sonos uses
(#344 [https://github.com/SoCo/SoCo/pull/344])


	Added methods for sonos playlist management: reorder_sonos_playlist,
clear_sonos_playlist, move_in_sonos_playlist,
remove_from_sonos_playlist, get_sonos_playlist_by_attr
(#352 [https://github.com/SoCo/SoCo/pull/352],
#348 [https://github.com/SoCo/SoCo/issues/348],
#353 [https://github.com/SoCo/SoCo/pull/351]) and
remove_sonos_playlist (#341 [https://github.com/SoCo/SoCo/issues/341],
#345 [https://github.com/SoCo/SoCo/pull/345])


	Support playmodes repeat-one (REPEAT_ONE) and shuffle-repeat-one
(SHUFFLE_REPEAT_ONE) introduced by Sonos 6.0
(#387 [https://github.com/SoCo/SoCo/pull/387])


	Better discovery: SoCo tries harder to find devices on the local network,
particularly where there are multiple network interfaces. The default
discovery timeout is also increased to 5 seconds
(#395 [https://github.com/SoCo/SoCo/pull/395],
#432 [https://github.com/SoCo/SoCo/pull/432])


	Large work package on the docs, which contains a new front page, more
sections, some advanced topics and an example page
(#406 [https://github.com/SoCo/SoCo/pull/406],
#360 [https://github.com/SoCo/SoCo/issues/360],
#368 [https://github.com/SoCo/SoCo/pull/368],
#362 [https://github.com/SoCo/SoCo/pull/362],
#326 [https://github.com/SoCo/SoCo/issues/326],
#369 [https://github.com/SoCo/SoCo/issues/369]).


	Added optional timeout argument to be passed onto requests when getting
speaker info (#302 [https://github.com/SoCo/SoCo/pull/302])


	Ignore .# specified subclasses in Didl xml. Several music services seem
to use an out-of-spec way to make sub classes in Didl, by specifying the
subclass name or function after a #. This caused our implementation of Didl
to reject it. This has now been fixed by simple ignoring these un-official
subclasses (#425 [https://github.com/SoCo/SoCo/pull/425])


	Added methods to manipulate sonos sleep functionality: set_sleep_timer,
get_sleep_timer (#413 [https://github.com/SoCo/SoCo/pull/413])


	Various cleanups (#351 [https://github.com/SoCo/SoCo/pull/351])


	Extended get_speaker_info to return more information about the Sonos
speakers (#335 [https://github.com/SoCo/SoCo/pull/335],
#320 [https://github.com/SoCo/SoCo/issues/320])






Bugfixes


	Clear zone group cache and reparse zone group information after join and
unjoin to prevent giving wrong topology information.
(#323 [https://github.com/SoCo/SoCo/pull/323],
#321 [https://github.com/SoCo/SoCo/issues/321])


	Fix typo preventing SoCo from parsing the audio metadata object used when a
TV is playing. (#331 [https://github.com/SoCo/SoCo/pull/331])


	Fix bug where SoCo would raise an exception if music services sent metadata
with invalid XML characters (#392 [https://github.com/SoCo/SoCo/pull/392],
#386 [https://github.com/SoCo/SoCo/issues/386])


	Event lister was (incorrectly) responding to GET and HEAD requests,
which could result in local files being served
(#430 [https://github.com/SoCo/SoCo/issues/430])


	Minor fix because ordereddict.values in py3 return ValuesView
(#359 [https://github.com/SoCo/SoCo/pull/359])


	Fixed bugs with parsing events
(#276 [https://github.com/SoCo/SoCo/issues/276])


	Fixed unit tests (#343 [https://github.com/SoCo/SoCo/pull/343],
#342 [https://github.com/SoCo/SoCo/issues/342])


	Fix in MusicLibrary constructor
(#370 [https://github.com/SoCo/SoCo/pull/370])






Backwards Compatability


	Dropped support for Python 3.2
(#324 [https://github.com/SoCo/SoCo/issues/324])


	Methods relating to the music library (get_artists,
get_album_artists, get_albums and others) have been moved to the
music_library module. Instead of device.get_album_artists(), please
now use device.music_library.get_album_artists() etc. Old code will
continue to work for the moment, but will raise deprecation warnings
(#350 [https://github.com/SoCo/SoCo/pull/350])


	Made a hard deprecation of the Spotify plugin since the API it relied on has
been deprecated and it therefore no longer worked
(#401 [https://github.com/SoCo/SoCo/issues/401],
#423 [https://github.com/SoCo/SoCo/issues/401])


	Dropped pylint checks for Python 2.6
(#363 [https://github.com/SoCo/SoCo/issues/363])








          

      

      

    




  

    
      
          
            
  
SoCo 0.11.1 release notes

SoCo 0.11.1 is a new version of the SoCo library. This release fixes a bug
with the installation of SoCo.

SoCo (Sonos Controller) [http://python-soco.com/] is a simple Python class
that allows you to programmatically control Sonos speakers.


Bugfixes


	Installation fails on systems where the default encoding is not UTF-8
(#312 [https://github.com/SoCo/SoCo/issues/312],
#313 [https://github.com/SoCo/SoCo/pull/313])








          

      

      

    




  

    
      
          
            
  
SoCo 0.11 release notes

SoCo 0.11 is a new version of the SoCo library. This release adds new
features and fixes several bugs.

SoCo (Sonos Controller) [http://python-soco.com/] is a simple Python class
that allows you to programmatically control Sonos speakers.


New Features and Improvements


	The new properties is_playing_tv, is_playing_radio and
is_playing_line_in have been added
(#225 [https://github.com/SoCo/SoCo/pull/225])


	A method get_item_album_art_uri has been added to return the absolute
album art full uri so that it is easy to put the album art in user
interfaces (#240 [https://github.com/SoCo/SoCo/pull/240]).


	Added support for satellite speaker detection in network topology parsing
code (#245 [https://github.com/SoCo/SoCo/pull/245])


	Added support to search the music library for tracks, an artists’ albums and
an artist’s album’s tracks (#246 [https://github.com/SoCo/SoCo/pull/246])


	A fairly extensive re-organisation of the DIDL metadata handling code, which
brings SoCo more into line with the DIDL-Lite spec, as adopted by Sonos. DIDL
objects can have now have multiple URIs, and the interface is much simpler.
(#256 [https://github.com/SoCo/SoCo/pull/256])


	Event objects now have a timestamp field
(#273 [https://github.com/SoCo/SoCo/pull/273])


	The IP address (ie network interface) for discovering Sonos speakers can
now be specified (#277 [https://github.com/SoCo/SoCo/pull/277])


	It is now possible to trigger an update of the music library
(#286 [https://github.com/SoCo/SoCo/pull/286])


	The event listener port is now configurable
(#288 [https://github.com/SoCo/SoCo/pull/288])


	Methods that can only be executed on master speakers will now raise a
SoCoSlaveException (#296 [https://github.com/SoCo/SoCo/pull/296])


	An example has been added that shows how to play local files by setting up a
temporary HTTP server in python
(#307 [https://github.com/SoCo/SoCo/pull/307])


	Test cleanup (#309 [https://github.com/SoCo/SoCo/pull/309])






Bugfixes


	The value of the IP_MULTICAST_TTL option is now ensured to be one byte long
(#269 [https://github.com/SoCo/SoCo/pull/269])


	Various encoding issues have been fixed
(#293 [https://github.com/SoCo/SoCo/issues/293],
#281 [https://github.com/SoCo/SoCo/issues/281],
#306 [https://github.com/SoCo/SoCo/pull/306])


	Fix bug with browsing of imported playlists
(#265 [https://github.com/SoCo/SoCo/pull/265])


	The discover method was broken in Python 3.4
(#271 [https://github.com/SoCo/SoCo/issues/271])


	An unknown / missing UPnP class in event subscriptions has been added
(#266 [https://github.com/SoCo/SoCo/issues/266],
#301 [https://github.com/SoCo/SoCo/issues/301],
#303 [https://github.com/SoCo/SoCo/pull/303])


	Fix add_to_queue which was broken since the data structure refactoring
(#308 [https://github.com/SoCo/SoCo/issues/308],
#310 [https://github.com/SoCo/SoCo/pull/310])






Backwards Compatability


	The exception DidlCannotCreateMetadata has been deprecated.
DidlMetadataError should be used instead.
(#256 [https://github.com/SoCo/SoCo/pull/256])


	Code which has been deprecated for more than 3 releases has been removed. See
previous release notes for deprecation notices.
(#273 [https://github.com/SoCo/SoCo/pull/273])








          

      

      

    




  

    
      
          
            
  
SoCo 0.10 release notes

SoCo 0.10 is a new version of the SoCo library. This release adds new features
and fixes several bugs.

SoCo (Sonos Controller) [http://python-soco.com/] is a simple Python class
that allows you to programmatically control Sonos speakers.


New Features


	Add support for taking a snapshot of the Sonos state, and then to restore it
later (#224 [https://github.com/SoCo/SoCo/pull/224], #251 [https://github.com/SoCo/SoCo/pull/251])


	Added create_sonos_playlist_from_queue. Creates a new Sonos playlist from the
current queue (#229 [https://github.com/SoCo/SoCo/pull/229])






Improvements


	Added a queue_size property to quickly return the size of the queue without
reading any items (#217 [https://github.com/SoCo/SoCo/pull/217])


	Add metadata to return structure of get_current_track_info (#220 [https://github.com/SoCo/SoCo/pull/220])


	Add option to play_uri that allows for the item to be set and then optionally
played (#219 [https://github.com/SoCo/SoCo/pull/219])


	Add option to play_uri that allows playing with a URI and title instead of
metadata (#221 [https://github.com/SoCo/SoCo/pull/221])


	Get the item ID from the XML responses which enables adding tracks for music
services such as Rhapsody which do not have all the detail in the item URI
(#233 [https://github.com/SoCo/SoCo/pull/233])


	Added label and short_label properties, to provide a consistent readable
label for group members (#228 [https://github.com/SoCo/SoCo/pull/228])


	Improved documentation (#248 [https://github.com/SoCo/SoCo/pull/248],
#253 [https://github.com/SoCo/SoCo/pull/253],
#259 [https://github.com/SoCo/SoCo/pull/259])


	Improved code examples (#250 [https://github.com/SoCo/SoCo/pull/250],
#252 [https://github.com/SoCo/SoCo/pull/252])






Bugfixes


	Fixed a bug where get_ml_item() would fail if a radio station was played
(#226 [https://github.com/SoCo/SoCo/pull/226])


	Fixed a timeout-related regression in soco.discover() (
#244 [https://github.com/SoCo/SoCo/pull/244])


	Discovery code fixed to account for closing of multicast sockets by certain
devices (#202 [https://github.com/SoCo/SoCo/pull/202],
#201 [https://github.com/SoCo/SoCo/pull/201])


	Fixed a bug where sometimes zone groups would be created without a
coordinator (#230 [https://github.com/SoCo/SoCo/pull/230])






Backwards Compatability

The metadata classes (ML*) have all been renamed (generally to Didl*),
and aligned more closely with the underlying XML. The Music Services data
structures (MS*) have been moved to their own module, and metadata for
radio broadcasts is now returned properly (#243 [https://github.com/SoCo/SoCo/pull/243]).

The URI class has been removed. As an alternative the method
soco.SoCo.play_uri() can be used to enqueue and play an URI. The class
soco.data_structures.DIDLObject can be used if an object is required.

Work is still ongoing on the metadata classes, so further changes should be
expected.





          

      

      

    




  

    
      
          
            
  
SoCo 0.9 release notes


New Features


	Alarm configuration (#171 [https://github.com/SoCo/SoCo/pull/171])

>>> from soco.alarms import Alarm, get_alarms
>>> # create an alarm with default properties
>>> # my_device is the SoCo instance on which the alarm will be played
>>> alarm = Alarm(my_device)
>>> print alarm.volume
20
>>> print get_alarms()
set([])
>>> # save the alarm to the Sonos system
>>> alarm.save()
>>> print get_alarms()
set([<Alarm id:88@15:26:15 at 0x107abb090>])
>>> # update the alarm
>>> alarm.recurrence = "ONCE"
>>> # Save it again for the change to take effect
>>> alarm.save()
>>> # Remove it
>>> alarm.remove()
>>> print get_alarms()
set([])







	Methods for browsing the Music library (#192 [https://github.com/SoCo/SoCo/pull/192],
#203 [https://github.com/SoCo/SoCo/pull/203],
#208 [https://github.com/SoCo/SoCo/pull/208])

import soco
soc = soco.SoCo('...ipaddress..')
some_album = soc.get_albums()['item_list'][0]
tracks_in_that_album = soc.browse(some_album)







	Support for full Album Art URIs (#207 [https://github.com/SoCo/SoCo/pull/207])


	Support for music queues (#214 [https://github.com/SoCo/SoCo/pull/214])

queue = soco.get_queue()
for item in queue:
    print item.title

print queue.number_returned
print queue.total_matches
print queue.update_id







	Support for processing of LastChange events (#194 [https://github.com/SoCo/SoCo/pull/194])


	Support for write operations on Playlists (#198 [https://github.com/SoCo/SoCo/pull/198])






Improvements


	Improved test coverage (#159 [https://github.com/SoCo/SoCo/pull/159],
#184 [https://github.com/SoCo/SoCo/pull/184])


	Fixes for Python 2.6 support (#175 [https://github.com/SoCo/SoCo/pull/175])


	Event-subscriptions can be auto-renewed (#179 [https://github.com/SoCo/SoCo/pull/179])


	The SoCo class can replaced by a custom implementation (#180 [https://github.com/SoCo/SoCo/pull/180])


	The cache can be globally disabled (#180 [https://github.com/SoCo/SoCo/pull/180])


	Music Library data structures are constructed for DIDL XML content (#191 [https://github.com/SoCo/SoCo/pull/191]).


	Added previously removed support for PyPy (#205 [https://github.com/SoCo/SoCo/pull/205])


	All music library methods (browse, get_tracks etc. #203 [https://github.com/SoCo/SoCo/pull/203] and get_queue #214 [https://github.com/SoCo/SoCo/pull/214]) now returns container objects
instead of dicts or lists. The metadata is now available from these container
objects as named attributes, so e.g. on a queue object you can access the
size with queue.total_matches.






Backwards Compatability


	Music library methods return container objects instead of dicts and lists (see
above).  The old way of accessing that metadata (by dictionary type
indexing), has been deprecated and is planned to be removed 3
releases after 0.9.








          

      

      

    




  

    
      
          
            
  
SoCo 0.8 release notes


New Features


	Re-added support for Python 2.6 (#154 [https://github.com/SoCo/SoCo/pull/154])


	Added SoCo.get_sonos_playlists() (#114 [https://github.com/SoCo/SoCo/pull/114])


	Added methods for working with speaker topology






	soco.SoCo.group retrieves the soco.groups.ZoneGroup to
which the speaker belongs (#132 [https://github.com/SoCo/SoCo/pull/132]).
The group itself has a soco.groups.ZoneGroup.member attribute
returning all of its members. Iterating directly over the group is possible
as well.


	Speakers can be grouped using soco.SoCo.join()
(#136 [https://github.com/SoCo/SoCo/pull/136]):

z1 = SoCo('192.168.1.101')
z2 = SoCo('192.168.1.102')
z1.join(z2)







	soco.SoCo.all_zones and soco.SoCo.visible_zones return all
and all visible zones, respectively.


	soco.SoCo.is_bridge indicates if the SoCo instance represents a
bridge.


	soco.SoCo.is_coordinator indicates if the SoCo instance is a
group coordinator (#166 [https://github.com/SoCo/SoCo/pull/166])








	A new soco.plugins.spotify.Spotify plugin allows querying and
playing the Spotify music catalogue (#119 [https://github.com/SoCo/SoCo/pull/119]):

from soco.plugins.spotify import Spotify
from soco.plugins.spotify import SpotifyTrack
# create a new plugin, pass the soco instance to it
myplugin = Spotify(device)
print 'index: ' + str(myplugin.add_track_to_queue(SpotifyTrack('
    spotify:track:20DfkHC5grnKNJCzZQB6KC')))
print 'index: ' + str(myplugin.add_album_to_queue(SpotifyAlbum('
    spotify:album:6a50SaJpvdWDp13t0wUcPU')))







	A soco.data_structures.URI item can be passed to add_to_queue
which allows playing music from arbitrary URIs (#147 [https://github.com/SoCo/SoCo/pull/147])

import soco
from soco.data_structures import URI

soc = soco.SoCo('...ip_address...')
uri = URI('http://www.noiseaddicts.com/samples/17.mp3')
soc.add_to_queue(uri)







	A new include_invisible parameter to soco.discover() can be used
to retrieve invisible speakers or bridges (#146 [https://github.com/SoCo/SoCo/pull/146])


	A new timeout parameter to soco.discover(). If no zones are found
within timeout seconds None is returned. (#146 [https://github.com/SoCo/SoCo/pull/146])


	Network requests can be cached for better performance (#131 [https://github.com/SoCo/SoCo/pull/131]).


	It is now possible to subscribe to events of a service using its
soco.services.Service.subscribe method, which returns a
soco.events.Subscription object. To unsubscribe, call the
soco.events.Subscription.unsubscribe method on the
returned object. (#121 [https://github.com/SoCo/SoCo/pull/121],
#130 [https://github.com/SoCo/SoCo/pull/130])


	Support for reading and setting crossfade (#165 [https://github.com/SoCo/SoCo/pull/165])






Improvements


	Performance improvements for speaker discovery (#146 [https://github.com/SoCo/SoCo/pull/146])


	Various improvements to the Wimp plugin (#140 [https://github.com/SoCo/SoCo/pull/140]).


	Test coverage tracking using coveralls.io [https://coveralls.io/] (#163 [https://github.com/SoCo/SoCo/pull/163])






Backwards Compatability


	Queue related use 0-based indexing consistently (#103 [https://github.com/SoCo/SoCo/pull/103])


	soco.SoCo.get_speakers_ip() is deprecated in favour of
soco.discover() (#124 [https://github.com/SoCo/SoCo/pull/124])








          

      

      

    




  

    
      
          
            
  
SoCo 0.7 release notes


New Features


	All information about queue and music library items, like e.g. the
title and album of a track, are now included in data structure classes
instead of dictionaries (the classes are available in the
The Music Library Data Structures sub-module ). This advantages of this
approach are:


	The type of the item is identifiable by its class name


	They have useful __str__ representations and an __equals__
method


	Information is available as named attributes


	They have the ability to produce their own UPnP meta-data (which is
used by the add_to_queue method).




See the Backwards Compatibility notice below.



	A webservice analyzer has been added in dev_tools/analyse_ws.py
(#46 [https://github.com/SoCo/SoCo/pull/46]).


	The commandline interface has been split into a separate project socos [https://github.com/SoCo/socos]. It provides an command line interface on
top of the SoCo library, and allows users to control their Sonos speakers
from scripts and from an interactive shell.


	Python 3.2 and later is now supported in addition to 2.7.


	A simple version of the first plugin for the Wimp service has been added
(#93 [https://github.com/SoCo/SoCo/pull/93]).


	The new soco.discover() method provides an easier interface for
discovering speakers in your network. SonosDiscovery has been deprecated
in favour of it (see Backwards Compatability below).


	SoCo instances are now singletons per IP address. For any given IP address, there is only one SoCo instance.


	The code for generating the XML to be sent to Sonos devices has been
completely rewritten, and it is now much easier to add new functionality. All
services exposed by Sonos zones are now available if you need them (#48 [https://github.com/SoCo/SoCo/pull/48]).






Backwards Compatability


Warning

Please read the section below carefully when upgrading to SoCo
0.7.




Data Structures

The move to using data structure classes for music item information instead
of dictionaries introduces some backwards incompatible changes in the
library (see #83 [https://github.com/SoCo/SoCo/pull/83]). The get_queue
and get_library_information functions (and all methods derived from the
latter) are affected. In the data structure classes, information like
e.g. the title is now available as named attributes.  This means that by the
update to 0.7 it will also be necessary to update your code like e.g:

# Version < 0.7
for item in soco.get_queue():
    print item['title']
# Version >=0.7
for item in soco.get_queue():
    print item.title







SonosDiscovery

The SonosDiscovery class has been deprecated (see #80 [https://github.com/SoCo/SoCo/pull/80] and #75 [https://github.com/SoCo/SoCo/issues/75]).

Instead of the following

>>> import soco
>>> d = soco.SonosDiscovery()
>>> ips = d.get_speaker_ips()
>>> for i in ips:
...        s = soco.SoCo(i)
...        print s.player_name





you should now write

>>> import soco
>>> for s in soco.discover():
...        print s.player_name







Properties

A number of methods have been replaced with properties, to simplify use (see #62 [https://github.com/SoCo/SoCo/pull/62] )

For example, use

soco.volume = 30
soco.volume -=3
soco.status_light = True





instead of

soco.volume(30)
soco.volume(soco.volume()-3)
soco.status_light("On")










          

      

      

    




  

    
      
          
            
  
SoCo 0.6 release notes


New features


	Music library information: Several methods has been added to get
information about the music library. It is now possible to get
e.g. lists of tracks, albums and artists.


	Raise exceptions on errors: Several SoCo specific exceptions
has been added. These exceptions are now raised e.g. when SoCo
encounters communications errors instead of returning an error
codes. This introduces a backwards incompatible change in SoCo
that all users should be aware of.






For SoCo developers


	Added plugin framework: A plugin framework has been added to
SoCo. The primary purpose of this framework is to provide a
natural partition of the code, in which code that is specific to
the individual music services is separated out into its own class
as a plugin. Read more about the plugin framework in the docs.


	Added unit testing framework: A unit testing framework has been
added to SoCo and unit tests has been written for 30% of the
methods in the SoCo class. Please consider supplementing any new
functionality with the appropriate unit tests and fell free to write
unit tests for any of the methods that are still missing.






Coming next


	Data structure change: For the next version of SoCo it is
planned to change the way SoCo handles data. It is planned to use
classes for all the data structures, both internally and for in- and
output. This will introduce a backwards incompatible change and
therefore users of SoCo should be aware that extra work will be
needed upon upgrading from version 0.6 to 0.7. The data structure
changes will be described in more detail in the release notes for
version 0.7.








          

      

      

    




  

    
      
          
            
  
Unit and integration tests

There are two sorts of tests written for the SoCo package. Unit tests
implement elementary checks of whether the individual methods produce the
expected results. Integration tests check that the package as a whole is able to
interface properly with the Sonos hardware. Such tests are especially useful
during re-factoring and to check that already implemented functionality
continues to work past updates to the Sonos units’ internal software.


Setting up your environment

To run the unit tests, you will need to have the pytest [http://pytest.org/latest]
testing tool installed.

You can install them and other development dependencies using the
requirements-dev.txt file like this:

pip install -r requirements-dev.txt







Running the unit tests

There are different ways of running the unit tests. The easiest is to use py.test's automatic test discovery.  Just change to the root directory of the SoCo package and type:

py.test





For others, see the py.test documentation [http://pytest.org/latest/usage.html]


Note

To run the unittests in this way, the soco package must be
importable, i.e. the folder that contains it (the root folder of
the git archive) must be in the list of paths that Python can
import from (the PYTHONPATH). The easiest way to set this up, if
you are using a virtual environment, is to install SoCo from the
git archive in editable mode. This is done by executing the
following command from the git archive root:

pip install -e .









Running the integration tests

At the moment, the integration tests cannot be run under the control of py.test. To run them, enter the unittest folder in the source code
checkout and run the test execution script
execute_unittests.py (it is required that the SoCo checkout is
added to the Python path of your system). To run all the unit tests
for the SoCo class execute the following command:

python execute_unittests.py --modules soco --ip 192.168.0.110





where the IP address should be replaced with the IP address of the
Sonos® unit you want to use for the unit tests (NOTE! At present the
unit tests for the SoCo module requires your Sonos® unit to be playing
local network music library tracks from the queue and have at least
two such tracks in the queue). You can get a list of all the units in
your network and their IP addresses by running:

python execute_unittests.py --list





To get the help for the unit test execution script which contains a
description of all the options run:

python execute_unittests.py --help







Unit test code structure and naming conventions

The unit tests for the SoCo code should be organized according to
the following guidelines.


One unit test module per class under test

Unit tests should be organized into modules, one module, i.e. one
file, for each class that should be tested. The module should be named
similarly to the class except replacing CamelCase with underscores and
followed by _unittest.py.

Example: Unit tests for the class FooBar should be stored in
foo_bar_unittests.py.



One unit test class per method under test

Inside the unit test modules the unit test should be organized into
one unit test case class per method under test. In order for the test
execution script to be able to calculate the test coverage, the test
classes should be named the same as the methods under test except that
the lower case underscores should be converted to CamelCase. If the
method is private, i.e. prefixed with 1 or 2 underscores, the test
case class name should be prefixed with the word Private.

Examples:







	Name of method under test

	Name of test case class





	get_current_track_info

	GetCurrentTrackInfo



	__parse_error

	PrivateParseError



	_my_hidden_method

	PrivateMyHiddenMethod









Add an unit test to an existing unit test module

To add a unit test case to an existing unit test module Foo first check
with the following command which methods that does not yet have unit tests:

python execute_unittests.py --modules foo --coverage





After having identified a method to write a unit test for, consider
what criteria should be tested, e.g. if the method executes and
returns the expected output on valid input and if it fails as expected on
invalid input. Then implement the unit test by writing a
class for it, following the naming convention mentioned in section
One unit test class per method under test. You can read more about unit test
classes in the reference documentation [http://docs.python.org/2/library/unittest.html] and there is a good
introduction to unit testing in Mark Pilgrim’s “Dive into Python” [http://www.diveintopython.net/unit_testing/index.html] (though the
aspects of test driven development, that it describes, is not a
requirement for SoCo development).


Special unit test design consideration for SoCo

SoCo is developed purely by volunteers in their spare time. This
leads to some special consideration during unit test design.

First of, volunteers will usually not have extra Sonos® units
dedicated for testing. For this reason the unit tests should be developed
in such a way that they can be run on units in use and with people
around, so e.g it should be avoided settings the volume to max.

Second, being developed in peoples spare time, the development is
likely a recreational activity, that might just be accompanied by
music from the same unit that should be tested. For this reason, that
unit should be left in the same state after test as it was
before. That means that the play list, play state, sound settings
etc. should be restored after the testing is complete.




Add a new unit test module (for a new class under test)

To add unit tests for the methods in a new class follow the steps below:


	Make a new file in the unit test folder named as mentioned in
section One unit test module per class under test.


	(Optional) Define an init function in the unit test module. Do
this only if it is necessary to pass information to the tests at
run time. Read more about the init function in the section
The init function.


	Add test case classes to this module. See Add an unit test to an existing unit test module.




Then it is necessary to make the unit test execution framework aware of
your unit test module. Do this by making the following additions to
the file execute_unittests.py.:


	Import the class under test and the unit test module in the
beginning of the file


	Add an item to the UNITTEST_MODULES dict located right after the
### MAIN SCRIPT comment. The added item should itself be a
dictionary with items like this:

UNITTEST_MODULES = {
 'soco': {'name': 'SoCo', 'unittest_module': soco_unittest,
          'class': soco.SoCo, 'arguments': {'ip': ARGS.ip}},
 'foo_bar': {'name': 'FooBar', 'unittest_module': foo_bar_unittest,
            'class': soco.FooBar,'arguments': {'ip': ARGS.ip}}
 }





where both the new imaginary foo_bar entry and the existing
soco entry are shown for clarity. The arguments dict is what will be
passed on to the init method, see section
The init function.



	Lastly, add the new module to the help text for the modules
command line argument, defined in the __build_option_parser
function:

parser.add_argument('--modules', type=str, default=None, help=''
                    'the modules to run unit test for can be '
                    '\'soco\', \'foo_bar\' or \'all\'')





The name that should be added to the text is the key for the unit
test module entry in the UNITTEST_MODULES dict.






The init function

Normally unit tests should be self-contained and therefore they should
have all the data they will need built in. However, that does not
apply to SoCo, because the IP’s of the Sonos® units will be required
and there is no way to know them in advance. Therefore, the execution
script will call the function init in the unit test modules, if it
exists, with a set of predefined arguments that can then be used for
unit test initialization. Note that the function is to be named
init , not __init__ like the class initializers. The init
function is called with one argument, which is the dictionary defined
under the key arguments in the unit test modules definition. Please
regard this as an exception to the general unit test best practices
guidelines and use it only if there are no other option.






          

      

      

    




  

    
      
          
            
  
Release Procedures

This document describes the necessary steps for creating a new release of SoCo.


Preparations


	Verify the version number stated in the release ticket (according to
semantic versioning [http://semver.org/]. Tag names should be prefixed
with v.


	Create the release notes RST document in doc/releases by copying
contents from the release notes issue. Texts can be rewritten for
legibility.


	Verify that all tests pass locally and on all supported versions of
Python via Travis-CI (the status is visible on the project frontpage
on GitHub).






Create and Publish


	Update the version number in __init__.py (see example [https://github.com/SoCo/SoCo/commit/d35171213eabbc4]) and commit.


	(If any changes other than the version number was made in
preparation for the release, push the release commit to GitHub
before proceeding, to ensure that all the continuous integration
passes. The automatic deployment to PyPI mentioned below, will not
work if continuous integration fails.)


	Tag the current commit, eg




git tag -a v0.7 -m 'release version 0.7'






	Push the tag. This will create a new release on GitHub, and will
automatically deploy the new version to PyPI (see #593 [https://github.com/SoCo/SoCo/pull/593])




git push --tags






	Update the GitHub release [https://github.com/SoCo/SoCo/releases/new]
using the release notes from the documentation. The release notes can be
abbreviated if a link to the documentation is provided.






Wrap-Up


	Close the milestone and issues for the release.


	Update the version number in __init__.py with an added “+” to
indicate development status (see example [https://github.com/SoCo/SoCo/commit/2bf8caf7736772920bafd181d8b844269d95be17]).


	Share the news!






Preparation for next release


	Define the next version number and expected release date (3 month after the
current release date, as per #524 [https://github.com/SoCo/SoCo/issues/524])).


	Create the milestone and set the release date.


	Create an issue for the upcoming release (tagged as Release [https://github.com/SoCo/SoCo/issues?q=is%3Aissue+is%3Aopen+label%3ARelease]),
and one for the corresponding release notes.








          

      

      

    




  

    
      
          
            

   Python Module Index


   
   a | 
   c | 
   d | 
   e | 
   g | 
   m | 
   p | 
   s | 
   t | 
   u | 
   x
   


   
     		 	

     		
       a	

     
       	
       	
       soco.alarms	
       

     
       	
       	
       soco.music_services.accounts	
       

     		 	

     		
       c	

     
       	
       	
       soco.cache	
       

     
       	
       	
       soco.config	
       

     
       	
       	
       soco.core	
       

     		 	

     		
       d	

     
       	
       	
       soco.data_structures	
       

     
       	
       	
       soco.discovery	
       

     		 	

     		
       e	

     
       	
       	
       soco.events	
       

     
       	
       	
       soco.events_base	
       

     
       	
       	
       soco.events_twisted	
       

     
       	
       	
       soco.exceptions	
       

     		 	

     		
       g	

     
       	
       	
       soco.groups	
       

     		 	

     		
       m	

     
       	
       	
       soco.ms_data_structures	
       

     
       	
       	
       soco.music_library	
       

     
       	
       	
       soco.music_services.music_service	
       

     		 	

     		
       p	

     
       	[image: -]
       	
       soco.plugins	
       

     
       	
       	   
       soco.plugins.example	
       

     
       	
       	   
       soco.plugins.plex	
       

     
       	
       	   
       soco.plugins.sharelink	
       

     
       	
       	   
       soco.plugins.spotify	
       

     
       	
       	   
       soco.plugins.wimp	
       

     		 	

     		
       s	

     
       	
       	
       soco.services	
       

     
       	
       	
       soco.snapshot	
       

     
       	
       	
       soco.soap	
       

     		 	

     		
       t	

     
       	
       	
       soco.music_services.token_store	
       

     		 	

     		
       u	

     
       	
       	
       soco.utils	
       

     		 	

     		
       x	

     
       	
       	
       soco.xml	
       

   



          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z
 


_


  	
      	__cause__ (soco.exceptions.EventParseException attribute)


      	_BaseCache (class in soco.cache)


      	_translation (soco.data_structures.DidlAlbum attribute)

      
        	(soco.data_structures.DidlAlbumList attribute)


        	(soco.data_structures.DidlAudioBook attribute)


        	(soco.data_structures.DidlAudioBroadcast attribute)


        	(soco.data_structures.DidlAudioBroadcastFavorite attribute)


        	(soco.data_structures.DidlAudioItem attribute)


        	(soco.data_structures.DidlComposer attribute)


        	(soco.data_structures.DidlContainer attribute)


        	(soco.data_structures.DidlFavorite attribute)


        	(soco.data_structures.DidlGenre attribute)


        	(soco.data_structures.DidlItem attribute)


        	(soco.data_structures.DidlMusicAlbum attribute)


        	(soco.data_structures.DidlMusicAlbumCompilation attribute)


        	(soco.data_structures.DidlMusicAlbumFavorite attribute)


        	(soco.data_structures.DidlMusicArtist attribute)


        	(soco.data_structures.DidlMusicGenre attribute)


        	(soco.data_structures.DidlMusicTrack attribute)


        	(soco.data_structures.DidlObject attribute)


        	(soco.data_structures.DidlPerson attribute)


        	(soco.data_structures.DidlPlaylistContainer attribute)


        	(soco.data_structures.DidlPlaylistContainerFavorite attribute)


        	(soco.data_structures.DidlPlaylistContainerTracklist attribute)


        	(soco.data_structures.DidlRadioShow attribute)


        	(soco.data_structures.DidlRecentShow attribute)


        	(soco.data_structures.DidlSameArtist attribute)


      


  





A


  	
      	Account (class in soco.music_services.accounts)


      	Action (class in soco.services)


      	actions (soco.services.Service attribute)


      	add_item_to_sonos_playlist() (soco.core.SoCo method)


      	add_multiple_to_queue() (soco.core.SoCo method)


      	add_share_link_to_queue() (soco.plugins.sharelink.ShareLinkPlugin method)


      	add_to_queue() (soco.core.SoCo method)

      
        	(soco.plugins.plex.PlexPlugin method)


      


      	add_uri_to_queue() (soco.core.SoCo method)


      	Alarm (class in soco.alarms)


      	alarm_id (soco.alarms.Alarm attribute)


      	AlarmClock (class in soco.services)


      	Alarms (class in soco.alarms)


      	album (soco.ms_data_structures.MSTrack attribute)


  

  	
      	album_art_uri (soco.ms_data_structures.MusicServiceItem attribute)


      	album_artist_display_option (soco.music_library.MusicLibrary attribute)


      	all_groups (soco.core.SoCo attribute)


      	all_zones (soco.core.SoCo attribute)


      	any_soco() (in module soco.discovery)


      	AppleMusicShare (class in soco.plugins.sharelink)


      	Argument (class in soco.services)


      	artist (soco.ms_data_structures.MSAlbum attribute)

      
        	(soco.ms_data_structures.MSTrack attribute)


      


      	audio_delay (soco.core.SoCo attribute)


      	AudioIn (class in soco.services)


      	auto_renew_fail (soco.events_base.SubscriptionBase attribute)


      	available_actions (soco.core.SoCo attribute)


      	available_search_categories (soco.music_services.music_service.MusicService attribute)


      	AVTransport (class in soco.services)


  





B


  	
      	balance (soco.core.SoCo attribute)


      	base_url (soco.services.Service attribute)


      	bass (soco.core.SoCo attribute)


      	begin_authentication() (soco.music_services.music_service.MusicService method)

      
        	(soco.music_services.music_service.MusicServiceSoapClient method)


      


      	boot_seqnum (soco.core.SoCo attribute)


  

  	
      	browse() (soco.music_library.MusicLibrary method)

      
        	(soco.plugins.wimp.Wimp method)


      


      	browse_by_idstring() (soco.music_library.MusicLibrary method)


      	build_album_art_full_uri() (soco.music_library.MusicLibrary method)


      	build_command() (soco.services.Service method)


      	buttons_enabled (soco.core.SoCo attribute)


      	by_name() (in module soco.discovery)


  





C


  	
      	Cache (class in soco.cache)


      	cache (soco.services.Service attribute)


      	CACHE_ENABLED (in module soco.config)


      	call() (soco.music_services.music_service.MusicServiceSoapClient method)

      
        	(soco.soap.SoapMessage method)


      


      	callback (soco.events_twisted.Subscription attribute)


      	camel_to_underscore() (in module soco.utils)


      	can_play (soco.ms_data_structures.MusicServiceItem attribute)


      	CannotCreateDIDLMetadata


      	canonical_uri() (soco.plugins.sharelink.AppleMusicShare method)

      
        	(soco.plugins.sharelink.DeezerShare method)


        	(soco.plugins.sharelink.ShareClass method)


        	(soco.plugins.sharelink.SpotifyShare method)


        	(soco.plugins.sharelink.TIDALShare method)


      


      	channel (soco.core.SoCo attribute)


      	clear() (soco.cache._BaseCache method)

      
        	(soco.cache.Cache method)


        	(soco.cache.NullCache method)


        	(soco.cache.TimedCache method)


      


  

  	
      	clear_queue() (soco.core.SoCo method)


      	clear_sonos_playlist() (soco.core.SoCo method)


      	clear_zone_groups() (soco.core.SoCo method)


      	complete_authentication() (soco.music_services.music_service.MusicService method)

      
        	(soco.music_services.music_service.MusicServiceSoapClient method)


      


      	compose_args() (soco.services.Service method)


      	contactable() (in module soco.discovery)


      	ContentDirectory (class in soco.services)


      	control_url (soco.services.Service attribute)


      	coordinator (soco.groups.ZoneGroup attribute)


      	count (soco.events_base.SubscriptionsMap attribute)

      
        	(soco.events_twisted.SubscriptionsMapTwisted attribute)


      


      	create_sonos_playlist() (soco.core.SoCo method)


      	create_sonos_playlist_from_queue() (soco.core.SoCo method)


      	create_stereo_pair() (soco.core.SoCo method)


      	cross_fade (soco.core.SoCo attribute)


  





D


  	
      	DeezerShare (class in soco.plugins.sharelink)


      	default_timeout (soco.cache.TimedCache attribute)


      	delete() (soco.cache._BaseCache method)

      
        	(soco.cache.Cache method)


        	(soco.cache.NullCache method)


        	(soco.cache.TimedCache method)


      


      	delete_library_share() (soco.music_library.MusicLibrary method)


      	deleted (soco.music_services.accounts.Account attribute)


      	deprecated (class in soco.utils)


      	desc (soco.music_services.music_service.MusicService attribute)


      	description (soco.plugins.wimp.Wimp attribute)


      	DeviceProperties (class in soco.services)


      	dialog_level (soco.core.SoCo attribute)


      	dialog_mode (soco.core.SoCo attribute)


      	didl_class_to_soco_class() (in module soco.data_structures)


      	didl_metadata (soco.ms_data_structures.MusicServiceItem attribute)


      	DidlAlbum (class in soco.data_structures)


      	DidlAlbumList (class in soco.data_structures)


      	DidlAudioBook (class in soco.data_structures)


      	DidlAudioBroadcast (class in soco.data_structures)


      	DidlAudioBroadcastFavorite (class in soco.data_structures)


      	DidlAudioItem (class in soco.data_structures)


      	DidlComposer (class in soco.data_structures)


      	DidlContainer (class in soco.data_structures)


  

  	
      	DidlFavorite (class in soco.data_structures)


      	DidlGenre (class in soco.data_structures)


      	DidlItem (class in soco.data_structures)


      	DidlMetaClass (class in soco.data_structures)


      	DIDLMetadataError


      	DidlMusicAlbum (class in soco.data_structures)


      	DidlMusicAlbumCompilation (class in soco.data_structures)


      	DidlMusicAlbumFavorite (class in soco.data_structures)


      	DidlMusicArtist (class in soco.data_structures)


      	DidlMusicGenre (class in soco.data_structures)


      	DidlMusicTrack (class in soco.data_structures)


      	DidlObject (class in soco.data_structures)


      	DidlPerson (class in soco.data_structures)


      	DidlPlaylistContainer (class in soco.data_structures)


      	DidlPlaylistContainerFavorite (class in soco.data_structures)


      	DidlPlaylistContainerTracklist (class in soco.data_structures)


      	DidlRadioShow (class in soco.data_structures)


      	DidlRecentShow (class in soco.data_structures)


      	DidlResource (class in soco.data_structures)


      	DidlSameArtist (class in soco.data_structures)


      	discover() (in module soco.discovery)


      	do_NOTIFY() (soco.events.EventNotifyHandler method)


      	duration (soco.data_structures.DidlResource attribute)

      
        	(soco.ms_data_structures.MSTrack attribute)


      


  





E


  	
      	enabled (soco.cache._BaseCache attribute)


      	end_direct_control_session() (soco.core.SoCo method)


      	Event (class in soco.events_base)


      	EVENT_ADVERTISE_IP (in module soco.config)


      	EVENT_LISTENER_IP (in module soco.config)


      	EVENT_LISTENER_PORT (in module soco.config)


      	event_subscription_url (soco.services.Service attribute)


      	event_vars (soco.services.Service attribute)


      	EventListener (class in soco.events)

      
        	(class in soco.events_twisted)


      


      	EventListenerBase (class in soco.events_base)


      	EventNotifyHandler (class in soco.events)

      
        	(class in soco.events_twisted)


      


  

  	
      	EventNotifyHandlerBase (class in soco.events_base)


      	EventParseException


      	events (soco.events_base.SubscriptionBase attribute)


      	EVENTS_MODULE (in module soco.config)


      	EventServer (class in soco.events)


      	EventServerThread (class in soco.events)


      	ExamplePlugin (class in soco.plugins.example)


      	exception (soco.exceptions.SoCoFault attribute)


      	extended_id (soco.ms_data_structures.MusicServiceItem attribute)


      	extract() (soco.plugins.sharelink.AppleMusicShare method)

      
        	(soco.plugins.sharelink.DeezerShare method)


        	(soco.plugins.sharelink.ShareClass method)


        	(soco.plugins.sharelink.SpotifyShare method)


        	(soco.plugins.sharelink.TIDALShare method)


      


  





F


  	
      	finished_subscribing() (soco.events_twisted.SubscriptionsMapTwisted method)


      	first_cap() (in module soco.utils)


      	fixed_volume (soco.core.SoCo attribute)


      	form_name() (in module soco.data_structures)


      	form_uri() (soco.plugins.wimp.Wimp static method)


      	from_config_file() (soco.music_services.token_store.JsonFileTokenStore class method)


  

  	
      	from_dict() (soco.data_structures.DidlObject class method)

      
        	(soco.data_structures.DidlResource class method)


        	(soco.ms_data_structures.MusicServiceItem class method)


      


      	from_element() (soco.data_structures.DidlObject class method)

      
        	(soco.data_structures.DidlResource class method)


      


      	from_name() (soco.plugins.SoCoPlugin class method)


      	from_xml() (soco.ms_data_structures.MusicServiceItem class method)


  





G


  	
      	get() (soco.alarms.Alarms method)

      
        	(soco.cache.Cache method)


        	(soco.cache.NullCache method)


        	(soco.cache.TimedCache method)


        	(soco.cache._BaseCache method)


      


      	get_accounts() (soco.music_services.accounts.Account class method)


      	get_accounts_for_service() (soco.music_services.accounts.Account class method)


      	get_alarms() (in module soco.alarms)


      	get_album_artists() (soco.music_library.MusicLibrary method)


      	get_albums() (soco.music_library.MusicLibrary method)

      
        	(soco.plugins.wimp.Wimp method)


      


      	get_albums_for_artist() (soco.music_library.MusicLibrary method)


      	get_all_music_services_names() (soco.music_services.music_service.MusicService class method)


      	get_artists() (soco.music_library.MusicLibrary method)

      
        	(soco.plugins.wimp.Wimp method)


      


      	get_battery_info() (soco.core.SoCo method)


      	get_composers() (soco.music_library.MusicLibrary method)


      	get_current_media_info() (soco.core.SoCo method)


      	get_current_track_info() (soco.core.SoCo method)


      	get_current_transport_info() (soco.core.SoCo method)


      	get_data_for_name() (soco.music_services.music_service.MusicService class method)


      	get_extended_metadata() (soco.music_services.music_service.MusicService method)


      	get_extended_metadata_text() (soco.music_services.music_service.MusicService method)


      	get_favorite_radio_shows() (soco.core.SoCo method)

      
        	(soco.music_library.MusicLibrary method)


      


      	get_favorite_radio_stations() (soco.core.SoCo method)

      
        	(soco.music_library.MusicLibrary method)


      


  

  	
      	get_genres() (soco.music_library.MusicLibrary method)


      	get_last_update() (soco.music_services.music_service.MusicService method)


      	get_listen_ip() (in module soco.events_base)


      	get_media_metadata() (soco.music_services.music_service.MusicService method)


      	get_media_uri() (soco.music_services.music_service.MusicService method)


      	get_metadata() (soco.music_services.music_service.MusicService method)


      	get_ms_item() (in module soco.ms_data_structures)


      	get_music_library_information() (soco.music_library.MusicLibrary method)


      	get_music_service_information() (soco.plugins.wimp.Wimp method)


      	get_playlists() (soco.music_library.MusicLibrary method)

      
        	(soco.plugins.wimp.Wimp method)


      


      	get_queue() (soco.core.SoCo method)


      	get_sleep_timer() (soco.core.SoCo method)


      	get_soap_header() (soco.music_services.music_service.MusicServiceSoapClient method)


      	get_sonos_favorites() (soco.core.SoCo method)

      
        	(soco.music_library.MusicLibrary method)


      


      	get_sonos_playlist_by_attr() (soco.core.SoCo method)


      	get_sonos_playlists() (soco.core.SoCo method)


      	get_speaker_info() (soco.core.SoCo method)


      	get_subscription() (soco.events_base.SubscriptionsMap method)


      	get_tracks() (soco.music_library.MusicLibrary method)

      
        	(soco.plugins.wimp.Wimp method)


      


      	get_tracks_for_album() (soco.music_library.MusicLibrary method)


      	get_uri() (soco.data_structures.DidlObject method)


      	group (soco.core.SoCo attribute)


      	GroupManagement (class in soco.services)


      	GroupRenderingControl (class in soco.services)


  





H


  	
      	handle_notification() (soco.events_base.EventNotifyHandlerBase method)


      	handle_upnp_error() (soco.services.Service method)


      	has_satellites (soco.core.SoCo attribute)


  

  	
      	has_subwoofer (soco.core.SoCo attribute)


      	has_token() (soco.music_services.token_store.JsonFileTokenStore method)

      
        	(soco.music_services.token_store.TokenStoreBase method)


      


      	household_id (soco.core.SoCo attribute)


  





I


  	
      	id_to_extended_id() (soco.plugins.wimp.Wimp static method)


      	ip_address (soco.core.SoCo attribute)


      	is_bridge (soco.core.SoCo attribute)


      	is_coordinator (soco.core.SoCo attribute)


      	is_playing_line_in (soco.core.SoCo attribute)


      	is_playing_radio (soco.core.SoCo attribute)


      	is_playing_tv (soco.core.SoCo attribute)


      	is_running (soco.events_base.EventListenerBase attribute)


      	is_satellite (soco.core.SoCo attribute)


      	is_share_link() (soco.plugins.sharelink.ShareLinkPlugin method)


      	is_soundbar (soco.core.SoCo attribute)


      	is_subscribed (soco.events_base.SubscriptionBase attribute)


      	is_subwoofer (soco.core.SoCo attribute)


      	is_valid_recurrence() (in module soco.alarms)


      	is_visible (soco.core.SoCo attribute)


      	item_class (soco.data_structures.DidlAlbum attribute)

      
        	(soco.data_structures.DidlAlbumList attribute)


        	(soco.data_structures.DidlAudioBook attribute)


        	(soco.data_structures.DidlAudioBroadcast attribute)


        	(soco.data_structures.DidlAudioBroadcastFavorite attribute)


        	(soco.data_structures.DidlAudioItem attribute)


        	(soco.data_structures.DidlComposer attribute)


        	(soco.data_structures.DidlContainer attribute)


        	(soco.data_structures.DidlFavorite attribute)


        	(soco.data_structures.DidlGenre attribute)


        	(soco.data_structures.DidlItem attribute)


        	(soco.data_structures.DidlMusicAlbum attribute)


        	(soco.data_structures.DidlMusicAlbumCompilation attribute)


        	(soco.data_structures.DidlMusicAlbumFavorite attribute)


        	(soco.data_structures.DidlMusicArtist attribute)


        	(soco.data_structures.DidlMusicGenre attribute)


        	(soco.data_structures.DidlMusicTrack attribute)


        	(soco.data_structures.DidlObject attribute)


        	(soco.data_structures.DidlPerson attribute)


        	(soco.data_structures.DidlPlaylistContainer attribute)


        	(soco.data_structures.DidlPlaylistContainerFavorite attribute)


        	(soco.data_structures.DidlPlaylistContainerTracklist attribute)


        	(soco.data_structures.DidlRadioShow attribute)


        	(soco.data_structures.DidlRecentShow attribute)


        	(soco.data_structures.DidlSameArtist attribute)


      


  

  	
      	item_id (soco.ms_data_structures.MusicServiceItem attribute)


      	iter_actions() (soco.services.Service method)


      	iter_event_vars() (soco.services.Service method)


  





J


  	
      	join() (soco.core.SoCo method)


  

  	
      	JsonFileTokenStore (class in soco.music_services.token_store)


  





K


  	
      	key (soco.music_services.accounts.Account attribute)


  





L


  	
      	label (soco.groups.ZoneGroup attribute)


      	last_alarm_list_version (soco.alarms.Alarms attribute)


      	library_updating (soco.music_library.MusicLibrary attribute)


      	list_library_shares() (soco.music_library.MusicLibrary method)


      	listen() (soco.events.EventListener method)

      
        	(soco.events_base.EventListenerBase method)


        	(soco.events_twisted.EventListener method)


      


  

  	
      	ListOfMusicInfoItems (class in soco.data_structures)


      	load_token_pair() (soco.music_services.token_store.JsonFileTokenStore method)

      
        	(soco.music_services.token_store.TokenStoreBase method)


      


      	log_message() (soco.events.EventNotifyHandler method)


      	loudness (soco.core.SoCo attribute)


  





M


  	
      	magic() (soco.plugins.sharelink.ShareClass static method)


      	make_key() (soco.cache.TimedCache static method)


      	members (soco.groups.ZoneGroup attribute)


      	metadata (soco.exceptions.EventParseException attribute)

      
        	(soco.music_services.accounts.Account attribute)


      


      	mic_enabled (soco.core.SoCo attribute)


      	move_in_sonos_playlist() (soco.core.SoCo method)


      	MR_ConnectionManager (class in soco.services)


      	MS_ConnectionManager (class in soco.services)


      	MSAlbum (class in soco.ms_data_structures)


      	MSAlbumList (class in soco.ms_data_structures)


      	MSArtist (class in soco.ms_data_structures)


      	MSArtistTracklist (class in soco.ms_data_structures)


      	MSCollection (class in soco.ms_data_structures)


      	MSFavorites (class in soco.ms_data_structures)


  

  	
      	MSPlaylist (class in soco.ms_data_structures)


      	MSTrack (class in soco.ms_data_structures)


      	music_plugin_play() (soco.plugins.example.ExamplePlugin method)


      	music_plugin_stop() (soco.plugins.example.ExamplePlugin method)


      	music_source (soco.core.SoCo attribute)


      	music_source_from_uri() (soco.core.SoCo static method)


      	MusicLibrary (class in soco.music_library)


      	MusicService (class in soco.music_services.music_service)


      	MusicServiceAuthException


      	MusicServiceException


      	MusicServiceItem (class in soco.ms_data_structures)


      	MusicServices (class in soco.services)


      	MusicServiceSoapClient (class in soco.music_services.music_service)


      	mute (soco.core.SoCo attribute)

      
        	(soco.groups.ZoneGroup attribute)


      


  





N


  	
      	name (soco.plugins.example.ExamplePlugin attribute)

      
        	(soco.plugins.SoCoPlugin attribute)


        	(soco.plugins.plex.PlexPlugin attribute)


        	(soco.plugins.sharelink.ShareLinkPlugin attribute)


        	(soco.plugins.wimp.Wimp attribute)


      


      	NAMESPACES (in module soco.xml)


  

  	
      	next() (soco.core.SoCo method)


      	nickname (soco.music_services.accounts.Account attribute)


      	night_mode (soco.core.SoCo attribute)


      	NotSupportedException


      	ns_tag() (in module soco.xml)


      	NullCache (class in soco.cache)


      	number_returned (soco.data_structures.ListOfMusicInfoItems attribute)


  





O


  	
      	oa_device_id (soco.music_services.accounts.Account attribute)


  

  	
      	only_on_master() (in module soco.core)


      	only_on_soundbars() (in module soco.core)


  





P


  	
      	parent_id (soco.ms_data_structures.MusicServiceItem attribute)


      	parse_alarm_payload() (in module soco.alarms)


      	parse_event_xml (in module soco.events_base)


      	partymode() (soco.core.SoCo method)


      	pause() (soco.core.SoCo method)


      	play() (soco.core.SoCo method)


      	play_from_queue() (soco.core.SoCo method)


      	play_mode (soco.alarms.Alarm attribute)

      
        	(soco.core.SoCo attribute)


      


      	play_now() (soco.plugins.plex.PlexPlugin method)


      	play_uri() (soco.core.SoCo method)


      	player_name (soco.core.SoCo attribute)


      	PlexPlugin (class in soco.plugins.plex)


  

  	
      	port (soco.events_twisted.EventListener attribute)


      	prepare() (soco.soap.SoapMessage method)


      	prepare_headers() (soco.soap.SoapMessage method)


      	prepare_soap_body() (soco.soap.SoapMessage method)


      	prepare_soap_envelope() (soco.soap.SoapMessage method)


      	prepare_soap_header() (soco.soap.SoapMessage method)


      	prettify() (in module soco.utils)


      	previous() (soco.core.SoCo method)


      	protocol_info (soco.data_structures.DidlResource attribute)


      	put() (soco.cache._BaseCache method)

      
        	(soco.cache.Cache method)


        	(soco.cache.NullCache method)


        	(soco.cache.TimedCache method)


      


  





Q


  	
      	QPlay (class in soco.services)


      	Queue (class in soco.data_structures)

      
        	(class in soco.services)


      


  

  	
      	queue_size (soco.core.SoCo attribute)


  





R


  	
      	ramp_to_volume() (soco.core.SoCo method)


      	really_unicode() (in module soco.utils)


      	really_utf8() (in module soco.utils)


      	recurrence (soco.alarms.Alarm attribute)


      	reference (soco.data_structures.DidlFavorite attribute)


      	register() (soco.events_base.SubscriptionsMap method)

      
        	(soco.events_twisted.SubscriptionsMapTwisted method)


      


      	remove() (soco.alarms.Alarm method)


      	remove_alarm_by_id() (in module soco.alarms)


      	remove_from_queue() (soco.core.SoCo method)


      	remove_from_sonos_playlist() (soco.core.SoCo method)


      	remove_sonos_playlist() (soco.core.SoCo method)


      	render_NOTIFY() (soco.events_twisted.EventNotifyHandler method)


  

  	
      	RenderingControl (class in soco.services)


      	renew() (soco.events.Subscription method)

      
        	(soco.events_base.SubscriptionBase method)


        	(soco.events_twisted.Subscription method)


      


      	reorder_sonos_playlist() (soco.core.SoCo method)


      	repeat (soco.core.SoCo attribute)


      	REQUEST_TIMEOUT (in module soco.config)


      	requested_port_number (soco.events_base.EventListenerBase attribute)


      	requested_timeout (soco.events_base.SubscriptionBase attribute)


      	Resource (class in soco.events_twisted)


      	restore() (soco.snapshot.Snapshot method)


      	
    RFC

      
        	RFC 3986


      


      	run() (soco.events.EventServerThread method)


  





S


  	
      	save() (soco.alarms.Alarm method)


      	save_collection() (soco.music_services.token_store.JsonFileTokenStore method)


      	save_token_pair() (soco.music_services.token_store.JsonFileTokenStore method)

      
        	(soco.music_services.token_store.TokenStoreBase method)


      


      	scan_network() (in module soco.discovery)


      	scan_network_any_soco() (in module soco.discovery)


      	scan_network_by_household_id() (in module soco.discovery)


      	scan_network_get_by_name() (in module soco.discovery)


      	scan_network_get_household_ids() (in module soco.discovery)


      	scpd_url (soco.services.Service attribute)


      	search() (soco.music_services.music_service.MusicService method)


      	search_track() (soco.music_library.MusicLibrary method)


      	search_type (soco.data_structures.SearchResult attribute)


      	SearchResult (class in soco.data_structures)


      	seek() (soco.core.SoCo method)


      	send_command() (soco.services.Service method)


      	send_event() (soco.events_base.SubscriptionBase method)


      	separate_stereo_pair() (soco.core.SoCo method)


      	serial_number (soco.music_services.accounts.Account attribute)


      	server (soco.events.EventServerThread attribute)


      	Service (class in soco.services)


      	service_id (soco.ms_data_structures.MusicServiceItem attribute)

      
        	(soco.plugins.plex.PlexPlugin attribute)


        	(soco.plugins.wimp.Wimp attribute)


      


      	service_info (soco.plugins.plex.PlexPlugin attribute)


      	service_name (soco.plugins.plex.PlexPlugin attribute)


      	service_number() (soco.plugins.sharelink.AppleMusicShare method)

      
        	(soco.plugins.sharelink.DeezerShare method)


        	(soco.plugins.sharelink.ShareClass method)


        	(soco.plugins.sharelink.SpotifyShare method)


        	(soco.plugins.sharelink.SpotifyUSShare method)


        	(soco.plugins.sharelink.TIDALShare method)


      


      	service_type (soco.music_services.accounts.Account attribute)

      
        	(soco.plugins.plex.PlexPlugin attribute)


        	(soco.services.Service attribute)


      


      	set_relative_volume() (soco.core.SoCo method)

      
        	(soco.groups.ZoneGroup method)


      


      	set_sleep_timer() (soco.core.SoCo method)


      	set_uri() (soco.data_structures.DidlObject method)


      	ShareClass (class in soco.plugins.sharelink)


      	ShareLinkPlugin (class in soco.plugins.sharelink)


      	short_label (soco.groups.ZoneGroup attribute)


      	show_xml() (in module soco.utils)


      	shuffle (soco.core.SoCo attribute)


      	sid (soco.events_base.SubscriptionBase attribute)


      	Snapshot (class in soco.snapshot)


      	snapshot() (soco.snapshot.Snapshot method)


      	SoapFault


      	SoapMessage (class in soco.soap)


      	SoCo (class in soco.core)


      	soco (soco.services.Service attribute)


      	soco.alarms (module)


      	soco.cache (module)


      	soco.config (module)


      	soco.core (module)


      	soco.data_structures (module)


      	soco.discovery (module)


      	soco.events (module)


      	soco.events_base (module)


      	soco.events_twisted (module)


      	soco.exceptions (module)


  

  	
      	soco.groups (module)


      	soco.ms_data_structures (module)


      	soco.music_library (module)


      	soco.music_services.accounts (module)


      	soco.music_services.music_service (module)


      	soco.music_services.token_store (module)


      	soco.plugins (module)


      	soco.plugins.example (module)


      	soco.plugins.plex (module)


      	soco.plugins.sharelink (module)


      	soco.plugins.spotify (module)


      	soco.plugins.wimp (module)


      	soco.services (module)


      	soco.snapshot (module)


      	soco.soap (module)


      	soco.utils (module)


      	soco.xml (module)


      	SOCO_CLASS (in module soco.config)


      	SoCoException


      	SoCoFault (class in soco.exceptions)


      	SoCoNotVisibleException


      	SoCoPlugin (class in soco.plugins)


      	SoCoSlaveException


      	SoCoUPnPException


      	sonos_uri_from_id() (soco.music_services.music_service.MusicService method)


      	soundbar_audio_input_format (soco.core.SoCo attribute)


      	soundbar_audio_input_format_code (soco.core.SoCo attribute)


      	SpotifyShare (class in soco.plugins.sharelink)


      	SpotifyUSShare (class in soco.plugins.sharelink)


      	start() (soco.events_base.EventListenerBase method)


      	start_library_update() (soco.music_library.MusicLibrary method)


      	status_light (soco.core.SoCo attribute)


      	stop() (soco.core.SoCo method)

      
        	(soco.events.EventServerThread method)


        	(soco.events_base.EventListenerBase method)


      


      	stop_flag (soco.events.EventServerThread attribute)


      	stop_listening() (soco.events.EventListener method)

      
        	(soco.events_base.EventListenerBase method)


        	(soco.events_twisted.EventListener method)


      


      	sub_enabled (soco.core.SoCo attribute)


      	sub_gain (soco.core.SoCo attribute)


      	subscribe() (soco.events.Subscription method)

      
        	(soco.events_base.SubscriptionBase method)


        	(soco.events_twisted.Subscription method)


        	(soco.services.Service method)


      


      	subscribing() (soco.events_twisted.SubscriptionsMapTwisted method)


      	Subscription (class in soco.events)

      
        	(class in soco.events_twisted)


      


      	SubscriptionBase (class in soco.events_base)


      	subscriptions (soco.events_base.SubscriptionsMap attribute)


      	subscriptions_lock (soco.events_base.SubscriptionsMap attribute)


      	SubscriptionsMap (class in soco.events_base)


      	SubscriptionsMapTwisted (class in soco.events_twisted)


      	supports_fixed_volume (soco.core.SoCo attribute)


      	surround_enabled (soco.core.SoCo attribute)


      	surround_full_volume_enabled (soco.core.SoCo attribute)


      	surround_volume_music (soco.core.SoCo attribute)


      	surround_volume_tv (soco.core.SoCo attribute)


      	switch_to_line_in() (soco.core.SoCo method)


      	switch_to_tv() (soco.core.SoCo method)


      	SystemProperties (class in soco.services)


  





T


  	
      	tag (soco.data_structures.DidlAlbum attribute)

      
        	(soco.data_structures.DidlAlbumList attribute)


        	(soco.data_structures.DidlAudioBook attribute)


        	(soco.data_structures.DidlAudioBroadcast attribute)


        	(soco.data_structures.DidlAudioBroadcastFavorite attribute)


        	(soco.data_structures.DidlAudioItem attribute)


        	(soco.data_structures.DidlComposer attribute)


        	(soco.data_structures.DidlContainer attribute)


        	(soco.data_structures.DidlFavorite attribute)


        	(soco.data_structures.DidlGenre attribute)


        	(soco.data_structures.DidlItem attribute)


        	(soco.data_structures.DidlMusicAlbum attribute)


        	(soco.data_structures.DidlMusicAlbumCompilation attribute)


        	(soco.data_structures.DidlMusicAlbumFavorite attribute)


        	(soco.data_structures.DidlMusicArtist attribute)


        	(soco.data_structures.DidlMusicGenre attribute)


        	(soco.data_structures.DidlMusicTrack attribute)


        	(soco.data_structures.DidlObject attribute)


        	(soco.data_structures.DidlPerson attribute)


        	(soco.data_structures.DidlPlaylistContainer attribute)


        	(soco.data_structures.DidlPlaylistContainerFavorite attribute)


        	(soco.data_structures.DidlPlaylistContainerTracklist attribute)


        	(soco.data_structures.DidlRadioShow attribute)


        	(soco.data_structures.DidlRecentShow attribute)


        	(soco.data_structures.DidlSameArtist attribute)


        	(soco.exceptions.EventParseException attribute)


      


  

  	
      	tags_with_text() (in module soco.ms_data_structures)


      	TIDALShare (class in soco.plugins.sharelink)


      	time_left (soco.events_base.SubscriptionBase attribute)


      	TimedCache (class in soco.cache)


      	timeout (soco.events_base.SubscriptionBase attribute)


      	title (soco.ms_data_structures.MusicServiceItem attribute)


      	to_dict (soco.ms_data_structures.MusicServiceItem attribute)


      	to_dict() (soco.data_structures.DidlObject method)

      
        	(soco.data_structures.DidlResource method)


      


      	to_didl_string() (in module soco.data_structures)


      	to_element() (soco.data_structures.DidlObject method)

      
        	(soco.data_structures.DidlResource method)


      


      	TokenStoreBase (class in soco.music_services.token_store)


      	total_matches (soco.data_structures.ListOfMusicInfoItems attribute)


      	treble (soco.core.SoCo attribute)


      	trueplay (soco.core.SoCo attribute)


  





U


  	
      	uid (soco.core.SoCo attribute)

      
        	(soco.groups.ZoneGroup attribute)


      


      	unjoin() (soco.core.SoCo method)


      	UnknownSoCoException


      	UnknownXMLStructure


      	unregister() (soco.events_base.SubscriptionsMap method)


      	unsubscribe() (soco.events.Subscription method)

      
        	(soco.events_base.SubscriptionBase method)


        	(soco.events_twisted.Subscription method)


      


      	unwrap_arguments() (soco.services.Service static method)


      	update() (soco.alarms.Alarm method)

      
        	(soco.alarms.Alarms method)


      


  

  	
      	update_id (soco.data_structures.ListOfMusicInfoItems attribute)


      	uri (soco.data_structures.DidlResource attribute)

      
        	(soco.ms_data_structures.MSAlbum attribute)


        	(soco.ms_data_structures.MSAlbumList attribute)


        	(soco.ms_data_structures.MSArtistTracklist attribute)


        	(soco.ms_data_structures.MSPlaylist attribute)


        	(soco.ms_data_structures.MSTrack attribute)


      


      	url_escape_path() (in module soco.utils)


      	username (soco.music_services.accounts.Account attribute)

      
        	(soco.plugins.wimp.Wimp attribute)


      


  





V


  	
      	Vartype (class in soco.services)


      	version (soco.services.Service attribute)


      	visible_zones (soco.core.SoCo attribute)


  

  	
      	voice_service_configured (soco.core.SoCo attribute)


      	volume (soco.alarms.Alarm attribute)

      
        	(soco.core.SoCo attribute)


        	(soco.groups.ZoneGroup attribute)


      


  





W


  	
      	Wimp (class in soco.plugins.wimp)


  

  	
      	wrap_arguments() (soco.services.Service static method)


  





Z


  	
      	ZoneGroup (class in soco.groups)


  

  	
      	ZoneGroupTopology (class in soco.services)


  







          

      

      

    

  

    
      
          
            
  
Release Notes

The release notes have been split by version. See SoCo releases for an index.




          

      

      

    




  

    
      
          
            
  
Tutorial

The tutorial has been moved to this location.




          

      

      

    




  

    
      
          
            
  

	Speaker Topologies

	UPnP Services

	Events

	The Music Library Data Structures







          

      

      

    




  

    
      
          
            
  

	Unit and integration tests

	Release Procedures







          

      

      

    




  _static/comment-bright.png





_images/inheritance-122662dcd36547b8064ba80afc52526b2f75cc6c.png
DidlAlbum

ListOfMusicInfoltems - @
—
SearchResult

DidlPerson

DidiGenre

DidlAlbumLisf

DidIMusicAlbumCompilation

DidIMusicAlbum
DidlComposer
DidIMusicArtist

DidIMusicAlbumFavorite

DidIMusicGenre

DidIPlaylistConta

iner H DidIPlaylistContainerFavorite

‘ DidIRadioShow ‘

‘ DidIPlaylistContainerTracklist

DidIObject 5
Didlltem

DidIFavorite

idlAudioltem

DidISameArtist
DidlAudioBook

—

‘.‘

DidlAudioBroadcast }—‘{ DidlAudioBroadcastFavorite

DidIMusicTrack

DidIRecentShow





_static/ajax-loader.gif





_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





_static/file.png





_static/minus.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to SoCo’s documentation!
        


        		
          Getting started
          
            		
              Installation
              
                		
                  From PyPI with pip
                


                		
                  Manual installation from .tar.gz file
                


                		
                  After installation check
                


              


            


            		
              Tutorial
              
                		
                  Discovery
                


                		
                  Music
                


              


            


          


        


        		
          Examples
          
            		
              Getting your devices
              
                		
                  Getting all your devices
                


                		
                  Getting any device
                


                		
                  Getting a named device
                


              


            


            		
              Handling groups of devices
              
                		
                  Information about a group
                


                		
                  Join/unjoin devices
                


                		
                  Party mode
                


              


            


            		
              Playback control
              
                		
                  Play, pause and stop
                


                		
                  More playback control with next, previous and seek
                


                		
                  Control of a group
                


              


            


            		
              Seeing and manipulating the queue
              
                		
                  Getting the queue
                


                		
                  Clearing the queue
                


              


            


            		
              Listing and deleting music library shares
            


          


        


        		
          Frequently Asked Questions
          
            		
              Why can’t I play a URI from music service X with the play_uri() method?
            


            		
              Why can’t I add a URI from music service X to the queue with the add_uri_to_queue() method?
            


            		
              Can I make my Sonos® speaker play music from my local hard drive with SoCo?
            


            		
              How can I save, then restore the previous playing Sonos state ?
            


          


        


        		
          Plugins
          
            		
              Creating a Plugin
            


            		
              Using a Plugin
            


            		
              The SoCoPlugin class
            


          


        


        		
          Authors
        


        		
          Speaker Topologies
          
            		
              Zone Group
            


          


        


        		
          UPnP Services
          
            		
              Inspecting
            


            		
              Events
            


          


        


        		
          Events
          
            		
              The events_twisted module
            


            		
              The events_asyncio module
            


            		
              Example: setting up
              
                		
                  soco.events
                


                		
                  soco.events_twisted
                


                		
                  soco.events_asyncio
                


              


            


            		
              Examples: specific features
              
                		
                  Autorenewal
                


                		
                  Timeout
                


                		
                  Renewal
                


                		
                  Autorenew failure
                


                		
                  Lenient error handling
                


                		
                  Events_twisted: adding callbacks and errbacks
                


              


            


          


        


        		
          The Music Library Data Structures
        


        		
          soco package
          
            		
              Subpackages
              
                		
                  soco.music_services package
                


                		
                  soco.plugins package
                


              


            


            		
              Submodules
              
                		
                  soco.alarms module
                


                		
                  soco.cache module
                


                		
                  soco.config module
                


                		
                  soco.core module
                


                		
                  soco.data_structures module
                


                		
                  soco.discovery module
                


                		
                  soco.events module
                


                		
                  soco.events_base module
                


                		
                  soco.events_twisted module
                


                		
                  soco.events_asyncio module
                


                		
                  soco.exceptions module
                


                		
                  soco.groups module
                


                		
                  soco.ms_data_structures module
                


                		
                  soco.music_library module
                


                		
                  soco.services module
                


                		
                  soco.snapshot module
                


                		
                  soco.soap module
                


                		
                  soco.utils module
                


                		
                  soco.xml module
                


              


            


          


        


        		
          SoCo releases
          
            		
              SoCo 0.26 Release Notes
            


            		
              SoCo 0.25 Release Notes
            


            		
              SoCo 0.24 Release Notes
            


            		
              SoCo 0.23 release notes
              
                		
                  New Features and Improvements
                


                		
                  Developer/Code Improvements
                


                		
                  Complete list of significant changes since v0.22
                


              


            


            		
              SoCo 0.22 release notes
              
                		
                  New Features and Improvements
                


                		
                  Developer/Code Improvements
                


                		
                  Complete list of significant changes since v0.21
                


              


            


            		
              SoCo 0.21 release notes
              
                		
                  New Features and Improvements
                


                		
                  Bug Fixes
                


                		
                  Developer Improvements
                


                		
                  List of Changes Associated with the 0.21 Milestone
                


              


            


            		
              SoCo 0.20 release notes
              
                		
                  New Features and Improvements
                


                		
                  Bugfixes
                


                		
                  Developer improvements
                


              


            


            		
              SoCo 0.19 release notes
              
                		
                  New Features and Improvements
                


                		
                  Bugfixes
                


              


            


            		
              SoCo 0.18 release notes
              
                		
                  New Features and Improvements
                


              


            


            		
              SoCo 0.17 release notes
              
                		
                  New Features and Improvements
                


                		
                  Bugfixes
                


              


            


            		
              SoCo 0.16 release notes
              
                		
                  New Features and Improvements
                


                		
                  Bugfixes
                


              


            


            		
              SoCo 0.15 release notes
              
                		
                  New Features and Improvements
                


                		
                  Bugfixes
                


                		
                  Backwards Compatability
                


              


            


            		
              SoCo 0.14 release notes
              
                		
                  New Features and Improvements
                


                		
                  Bugfixes
                


              


            


            		
              SoCo 0.13 release notes
              
                		
                  New Features and Improvements
                


                		
                  Bugfixes
                


                		
                  Backwards Compatability
                


              


            


            		
              SoCo 0.12 release notes
              
                		
                  New Features and Improvements
                


                		
                  Bugfixes
                


                		
                  Backwards Compatability
                


              


            


            		
              SoCo 0.11.1 release notes
              
                		
                  Bugfixes
                


              


            


            		
              SoCo 0.11 release notes
              
                		
                  New Features and Improvements
                


                		
                  Bugfixes
                


                		
                  Backwards Compatability
                


              


            


            		
              SoCo 0.10 release notes
              
                		
                  New Features
                


                		
                  Improvements
                


                		
                  Bugfixes
                


                		
                  Backwards Compatability
                


              


            


            		
              SoCo 0.9 release notes
              
                		
                  New Features
                


                		
                  Improvements
                


                		
                  Backwards Compatability
                


              


            


            		
              SoCo 0.8 release notes
              
                		
                  New Features
                


                		
                  Improvements
                


                		
                  Backwards Compatability
                


              


            


            		
              SoCo 0.7 release notes
              
                		
                  New Features
                


                		
                  Backwards Compatability
                


              


            


            		
              SoCo 0.6 release notes
              
                		
                  New features
                


                		
                  For SoCo developers
                


                		
                  Coming next
                


              


            


          


        


        		
          Unit and integration tests
          
            		
              Setting up your environment
            


            		
              Running the unit tests
            


            		
              Running the integration tests
            


            		
              Unit test code structure and naming conventions
              
                		
                  One unit test module per class under test
                


                		
                  One unit test class per method under test
                


              


            


            		
              Add an unit test to an existing unit test module
              
                		
                  Special unit test design consideration for SoCo
                


              


            


            		
              Add a new unit test module (for a new class under test)
              
                		
                  The init function
                


              


            


          


        


        		
          Release Procedures
          
            		
              Preparations
            


            		
              Create and Publish
            


            		
              Wrap-Up
            


            		
              Preparation for next release
            


          


        


      


    
  

_static/up-pressed.png





_static/up.png





_static/plus.png





