
soco Documentation
Release 0.27.0

Author

Mar 14, 2022

User Documentation

1 Contents 3
1.1 Getting started . 3

1.1.1 Installation . 3
1.1.1.1 From PyPI with pip . 3
1.1.1.2 Manual installation from .tar.gz file . 3
1.1.1.3 After installation check . 4

1.1.2 Tutorial . 4
1.1.2.1 Discovery . 4
1.1.2.2 Music . 4

1.2 Examples . 4
1.2.1 Getting your devices . 5

1.2.1.1 Getting all your devices . 5
1.2.1.2 Getting any device . 5
1.2.1.3 Getting a named device . 5

1.2.2 Handling groups of devices . 5
1.2.2.1 Information about a group . 5
1.2.2.2 Join/unjoin devices . 6
1.2.2.3 Party mode . 6

1.2.3 Playback control . 6
1.2.3.1 Play, pause and stop . 6
1.2.3.2 More playback control with next, previous and seek 6
1.2.3.3 Control of a group . 7

1.2.4 Seeing and manipulating the queue . 8
1.2.4.1 Getting the queue . 8
1.2.4.2 Clearing the queue . 8

1.2.5 Listing and deleting music library shares . 8
1.3 Frequently Asked Questions . 9

1.3.1 Why can’t I play a URI from music service X with the play_uri() method? 9
1.3.2 Why can’t I add a URI from music service X to the queue with the add_uri_to_queue()

method? . 9
1.3.3 Can I make my Sonos® speaker play music from my local hard drive with SoCo? 9
1.3.4 How can I save, then restore the previous playing Sonos state ? 9

1.4 Plugins . 10
1.4.1 Creating a Plugin . 10
1.4.2 Using a Plugin . 10
1.4.3 The SoCoPlugin class . 10

i

1.5 Authors . 11
1.5.1 Project Creator . 11
1.5.2 Maintainers . 11
1.5.3 Contributors . 11

1.6 Speaker Topologies . 12
1.6.1 Zone Group . 12

1.7 UPnP Services . 12
1.7.1 Inspecting . 13
1.7.2 Events . 13

1.8 Events . 13
1.8.1 The events_twisted module . 13
1.8.2 The events_asyncio module . 14
1.8.3 Example: setting up . 14

1.8.3.1 soco.events . 14
1.8.3.2 soco.events_twisted . 15
1.8.3.3 soco.events_asyncio . 16

1.8.4 Examples: specific features . 16
1.8.4.1 Autorenewal . 16
1.8.4.2 Timeout . 16
1.8.4.3 Renewal . 16
1.8.4.4 Autorenew failure . 16
1.8.4.5 Lenient error handling . 17
1.8.4.6 Events_twisted: adding callbacks and errbacks . 17

1.9 The Music Library Data Structures . 17
1.10 soco package . 18

1.10.1 Subpackages . 18
1.10.1.1 soco.music_services package . 18
1.10.1.2 soco.plugins package . 27

1.10.2 Submodules . 34
1.10.2.1 soco.alarms module . 34
1.10.2.2 soco.cache module . 38
1.10.2.3 soco.config module . 40
1.10.2.4 soco.core module . 41
1.10.2.5 soco.data_structures module . 60
1.10.2.6 soco.discovery module . 78
1.10.2.7 soco.events module . 82
1.10.2.8 soco.events_base module . 85
1.10.2.9 soco.events_twisted module . 89
1.10.2.10 soco.events_asyncio module . 93
1.10.2.11 soco.exceptions module . 93
1.10.2.12 soco.groups module . 94
1.10.2.13 soco.ms_data_structures module . 96
1.10.2.14 soco.music_library module . 99
1.10.2.15 soco.services module . 104
1.10.2.16 soco.snapshot module . 110
1.10.2.17 soco.soap module . 111
1.10.2.18 soco.utils module . 113
1.10.2.19 soco.xml module . 114

1.11 SoCo releases . 115
1.11.1 SoCo 0.26 Release Notes . 115
1.11.2 SoCo 0.25 Release Notes . 115
1.11.3 SoCo 0.24 Release Notes . 115
1.11.4 SoCo 0.23 release notes . 115

1.11.4.1 New Features and Improvements . 115

ii

1.11.4.2 Developer/Code Improvements . 115
1.11.4.3 Complete list of significant changes since v0.22 116

1.11.5 SoCo 0.22 release notes . 116
1.11.5.1 New Features and Improvements . 116
1.11.5.2 Developer/Code Improvements . 116
1.11.5.3 Complete list of significant changes since v0.21 116

1.11.6 SoCo 0.21 release notes . 116
1.11.6.1 New Features and Improvements . 116
1.11.6.2 Bug Fixes . 117
1.11.6.3 Developer Improvements . 117
1.11.6.4 List of Changes Associated with the 0.21 Milestone 117

1.11.7 SoCo 0.20 release notes . 117
1.11.7.1 New Features and Improvements . 117
1.11.7.2 Bugfixes . 117
1.11.7.3 Developer improvements . 118

1.11.8 SoCo 0.19 release notes . 118
1.11.8.1 New Features and Improvements . 118
1.11.8.2 Bugfixes . 118

1.11.9 SoCo 0.18 release notes . 118
1.11.9.1 New Features and Improvements . 119

1.11.10 SoCo 0.17 release notes . 119
1.11.10.1 New Features and Improvements . 119
1.11.10.2 Bugfixes . 120

1.11.11 SoCo 0.16 release notes . 120
1.11.11.1 New Features and Improvements . 120
1.11.11.2 Bugfixes . 120

1.11.12 SoCo 0.15 release notes . 120
1.11.12.1 New Features and Improvements . 120
1.11.12.2 Bugfixes . 121
1.11.12.3 Backwards Compatability . 121

1.11.13 SoCo 0.14 release notes . 121
1.11.13.1 New Features and Improvements . 121
1.11.13.2 Bugfixes . 121

1.11.14 SoCo 0.13 release notes . 121
1.11.14.1 New Features and Improvements . 122
1.11.14.2 Bugfixes . 122
1.11.14.3 Backwards Compatability . 122

1.11.15 SoCo 0.12 release notes . 123
1.11.15.1 New Features and Improvements . 123
1.11.15.2 Bugfixes . 123
1.11.15.3 Backwards Compatability . 124

1.11.16 SoCo 0.11.1 release notes . 124
1.11.16.1 Bugfixes . 124

1.11.17 SoCo 0.11 release notes . 124
1.11.17.1 New Features and Improvements . 124
1.11.17.2 Bugfixes . 125
1.11.17.3 Backwards Compatability . 125

1.11.18 SoCo 0.10 release notes . 125
1.11.18.1 New Features . 125
1.11.18.2 Improvements . 126
1.11.18.3 Bugfixes . 126
1.11.18.4 Backwards Compatability . 126

1.11.19 SoCo 0.9 release notes . 126
1.11.19.1 New Features . 126

iii

1.11.19.2 Improvements . 127
1.11.19.3 Backwards Compatability . 127

1.11.20 SoCo 0.8 release notes . 128
1.11.20.1 New Features . 128
1.11.20.2 Improvements . 129
1.11.20.3 Backwards Compatability . 129

1.11.21 SoCo 0.7 release notes . 129
1.11.21.1 New Features . 129
1.11.21.2 Backwards Compatability . 129

1.11.22 SoCo 0.6 release notes . 131
1.11.22.1 New features . 131
1.11.22.2 For SoCo developers . 131
1.11.22.3 Coming next . 131

1.12 Unit and integration tests . 131
1.12.1 Setting up your environment . 131
1.12.2 Running the unit tests . 131
1.12.3 Running the integration tests . 132
1.12.4 Unit test code structure and naming conventions . 132

1.12.4.1 One unit test module per class under test . 132
1.12.4.2 One unit test class per method under test . 132

1.12.5 Add an unit test to an existing unit test module . 133
1.12.5.1 Special unit test design consideration for SoCo . 133

1.12.6 Add a new unit test module (for a new class under test) . 133
1.12.6.1 The init function . 134

1.13 Release Procedures . 134
1.13.1 Preparations . 134
1.13.2 Create and Publish . 134
1.13.3 Wrap-Up . 135
1.13.4 Preparation for next release . 135

2 Indices and tables 137

Python Module Index 139

Index 141

iv

soco Documentation, Release 0.27.0

SoCo (Sonos Controller) is a high level Python 3 library to control your Sonos ® speakers with:

Import soco and get a SoCo instance
import soco
device = soco.discovery.any_soco()

Get all albums from the music library that contains the word "Black"
and add them to the queue
albums = device.music_library.get_albums(search_term='Black')
for album in albums:

print('Added:', album.title)
device.add_to_queue(album)

Dial up the volume (just a bit) and play
device.volume += 10
device.play()

To get up and running quickly with SoCo, start by reading the getting started page, with installation instructions and a
small tutorial and then wet your appetite with the micro examples. Then optionally follow up with any of the advanced
topics that pique your interest: Speaker Topologies, Events and UPnP Services. Finally dive into the the full module
reference documentation.

If you have a question, start by consulting the FAQ. If your question remains unanswered, post a question in the
SoCo/SoCo Gitter chat room or in the SoCo Google group.

If you are interested in participating in the development, plase read the development documentation and file a bug or
make a pull request on Github.

User Documentation 1

www.sonos.com
https://gitter.im/SoCo/SoCo
https://groups.google.com/forum/#!forum/python-soco
https://github.com/SoCo/SoCo/issues
https://github.com/SoCo/SoCo/pulls
https://github.com/SoCo/SoCo

soco Documentation, Release 0.27.0

2 User Documentation

CHAPTER 1

Contents

1.1 Getting started

This section will help you to quickly get started with SoCo.

1.1.1 Installation

SoCo can be installed either with pip (recommended) or manually.

1.1.1.1 From PyPI with pip

The easiest way to install SoCo, is to install it from PyPI with the program pip. This can be done with the command:

pip install soco

This will automatically take care of installing any dependencies you need.

1.1.1.2 Manual installation from .tar.gz file

SoCo can also be installed manually from the .tar.gz file. First, find the latest version of SoCo on PyPI and download
the .tar.gz file at the bottom of the page. After that, extract the content and move into the extracted folder. As an
example, for SoCo 0.11.1 and on a Unix type system, this can be done with the following commands:

wget https://pypi.python.org/packages/source/s/soco/soco-0.11.1.tar.gz
→˓#md5=73187104385f04d18ce3e56853be1e0c
tar zxvf soco-0.11.1.tar.gz
cd soco-0.11.1/

Have a look inside the requirements.txt file. You will need to install the dependencies listed in that file yourself.
See the documentation for the individual dependencies for installation instructions.

After the requirements are in place, the package can be install with the command:

3

https://pypi.python.org/pypi
https://pip.pypa.io/en/stable/
https://pypi.python.org/pypi/soco

soco Documentation, Release 0.27.0

python setup.py install

1.1.1.3 After installation check

After installation, open a Python interpreter and check that soco can be imported and that your Sonos® players can
be discovered:

>>> import soco
>>> soco.discover()
set([SoCo("192.168.0.16"), SoCo("192.168.0.17"), SoCo("192.168.0.10")])

1.1.2 Tutorial

SoCo allows you to control your Sonos sound system from a Python program. For a quick start have a look at the
example applications that come with the library.

1.1.2.1 Discovery

For discovering the Sonos devices in your network, use soco.discover().

>>> import soco
>>> speakers = soco.discover()

It returns a set of soco.SoCo instances, each representing a speaker in your network.

1.1.2.2 Music

You can use those SoCo instances to inspect and interact with your speakers.

>>> speaker = speakers.pop()
>>> speaker.player_name
'Living Room'
>>> speaker.ip_address
u'192.168.0.129'

>>> speaker.volume
10
>>> speaker.volume = 15
>>> speaker.play()

See for soco.SoCo for all methods that are available for a speaker.

1.2 Examples

This page contains collection of small examples to show of the features of SoCo and hopefully get you well started
with the library.

All examples are shown as if entered in the Python interpreter (as apposed to executed from a file) because that makes
it easy to incorporate output in the code listings.

4 Chapter 1. Contents

https://github.com/SoCo/SoCo/tree/master/examples
https://docs.python.org/3/library/stdtypes.html#set

soco Documentation, Release 0.27.0

All the examples from Playback control and forward assume that you have followed one of the examples in Getting
your devices and therefore already have a variable named device that points to a soco.SoCo instance.

1.2.1 Getting your devices

1.2.1.1 Getting all your devices

To get all your devices use the soco.discover() function:

>>> import soco
>>> devices = soco.discover()
>>> devices
set([SoCo("192.168.0.10"), SoCo("192.168.0.30"), SoCo("192.168.0.17")])
>>> device = devices.pop()
>>> device
SoCo("192.168.0.16")

1.2.1.2 Getting any device

To get any device use the soco.discovery.any_soco() function. This can be useful for cases where you really
do not care which one you get, you just need one e.g. to query for music library information:

>>> import soco
>>> device = soco.discovery.any_soco()
>>> device
SoCo("192.168.0.16")

1.2.1.3 Getting a named device

Getting a device by player name can be done with the soco.discovery.by_name() function:

>>> from soco.discovery import by_name
>>> device = by_name("Living Room")
>>> device
SoCo("192.168.1.18")

1.2.2 Handling groups of devices

1.2.2.1 Information about a group

To get information about a group, pick a device and use the all_groups property:

>>> import soco
>>> devices = {device.player_name: device for device in soco.discover()}
>>> devices
{'Living Room': SoCo("192.168.1.47"), 'Office': SoCo("192.168.1.48")}

>>> devices['Living Room'].all_groups
{ZoneGroup(uid='RINCON_347E5C68F04001400:2900176654', coordinator=SoCo("192.168.1.48
→˓"), members={SoCo("192.168.1.48")}),
ZoneGroup(uid='RINCON_7828CAF58E6E01400:3613865501', coordinator=SoCo("192.168.1.47
→˓"), members={SoCo("192.168.1.47")})}

1.2. Examples 5

soco Documentation, Release 0.27.0

In the case above, there are two independent devices, one group for each device with the device as its only member.

1.2.2.2 Join/unjoin devices

You can use the join() method to join a device to another ‘master’ device:

>>> devices['Office'].join(devices['Living Room'])
>>> devices['Living Room'].all_groups
{ZoneGroup(uid='RINCON_7828CAF58E6E01400:3613865501', coordinator=SoCo("192.168.1.47
→˓"), members={SoCo("192.168.1.47"), SoCo("192.168.1.48")})}

Now, there is a single group composed of the two devices, with the Living Room device as the coordinator of the
group.

Use the unjoin() method to unjoin a device in a group:

>>> devices['Living Room'].unjoin()
>>> devices['Living Room'].all_groups
{ZoneGroup(uid='RINCON_7828CAF58E6E01400:3613865501', coordinator=SoCo("192.168.1.48
→˓"), members={SoCo("192.168.1.48")}),
ZoneGroup(uid='RINCON_7828CAF58E6E01400:3613865502', coordinator=SoCo("192.168.1.47
→˓"), members={SoCo("192.168.1.47")})}

1.2.2.3 Party mode

Use the partymode() method to join all the devices in your network into a single group, in one command:

>>> devices['Living Room'].partymode()
>>> devices['Living Room'].all_groups
{ZoneGroup(uid='RINCON_7828CAF58E6E01400:3613865501', coordinator=SoCo("192.168.1.47
→˓"), members={SoCo("192.168.1.47"), SoCo("192.168.1.48")})}

1.2.3 Playback control

1.2.3.1 Play, pause and stop

The normal play, pause and stop functionality is provided with similarly named methods (play(),
pause() and stop()) on the SoCo instance and the current state is included in the output of
get_current_transport_info():

>>> device.get_current_transport_info()['current_transport_state']
'STOPPED'
>>> device.play()
>>> device.get_current_transport_info()['current_transport_state']
'PLAYING'
>>> device.pause()
>>> device.get_current_transport_info()['current_transport_state']
'PAUSED_PLAYBACK'

1.2.3.2 More playback control with next, previous and seek

Navigating to the next or previous track is similarly done with methods of the same name (next() and
previous()) and information about the current position in the queue is contained in the output from

6 Chapter 1. Contents

soco Documentation, Release 0.27.0

get_current_track_info():

>>> device.get_current_track_info()['playlist_position']
'29'
>>> device.next()
>>> device.get_current_track_info()['playlist_position']
'30'
>>> device.previous()
>>> device.get_current_track_info()['playlist_position']
'29'

Seeking is done with the seek() method. Note that the input for that method is a string on the form “HH:MM:SS”
or “H:MM:SS”. The current position is also contained in get_current_track_info():

>>> device.get_current_track_info()['position']
'0:02:59'
>>> device.seek("0:00:30")
>>> device.get_current_track_info()['position']
'0:00:31'

1.2.3.3 Control of a group

Only the coordinator of a group can control playback (play, pause, stop, next, previous, seek commands) and manage
the queue (add or remove track, clear the queue). A SoCoSlaveException exception will be raised if a master-
only command is called on a non-coordinator device.

Other commands like volume, loudness and treble, mute, night mode can be controlled on each individual player in
the group.

You can use the is_coordinator property to see if a device is the coordinator:

>>> devices['Living Room'].is_coordinator
True

From a device, you can get the coordinator of a group by using the group property of the SoCo instance, which
returns a ZoneGroup instance allowing access to its coordinator property:

>>> devices['Living Room'].group.coordinator
SoCo("192.168.1.47")
>>> devices['Office'].group.coordinator
SoCo("192.168.1.47")

To set a group volume, use the volume property or the set_relative_volume() method:

>>> # let's define some aliases ...
>>> lr = devices['Living Room']
>>> of = devices['Office']
>>> lr.volume, of.volume
(17, 10)
>>> g = lr.group # alias to the group
>>> g.volume
13
>>> g.volume = 20
>>> lr.volume, of.volume
(27, 13)

1.2. Examples 7

soco Documentation, Release 0.27.0

1.2.4 Seeing and manipulating the queue

1.2.4.1 Getting the queue

Getting the queue is done with the get_queue() method:

>>> queue = device.get_queue()
>>> queue
Queue(items=[<DidlMusicTrack 'b'Blackened'' at 0x7f2237006dd8>, ..., <DidlMusicTrack
→˓'b'Dyers Eve'' at 0x7f2237006828>])

The returned Queue object is a sequence of items from the queue, meaning that it can be iterated over and its length
aquired with len():

>>> len(queue)
9
>>> for item in queue:
... print(item.title)
...
Blackened
...and Justice for All
Eye of the Beholder
One
The Shortest Straw
Harvester of Sorrow
The Frayed Ends of Sanity
To Live Is to Die
Dyers Eve

The queue object also has total_matches and number_returned attributes, which are used to figure out
whether paging is required in order to get all elements of the queue. See the ListOfMusicInfoItems docstring
for details.

1.2.4.2 Clearing the queue

Clearing the queue is done with the clear_queue() method as follows:

>>> queue = device.get_queue()
>>> len(queue)
9
>>> device.clear_queue()
>>> queue = device.get_queue()
>>> len(queue)
0

1.2.5 Listing and deleting music library shares

Music library shares are the local network drive shares connected to Sonos, which host the audio content in the Sonos
Music Library.

To list the shares connected to Sonos, use the list_library_shares() method as follows:

>>> device.music_library.list_library_shares()
['//share_host_01/music', '//share_host_02/music']

8 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#len

soco Documentation, Release 0.27.0

The result is a list of network share locations.

To delete a network share, use the delete_library_share() method as follows:

>>> device.music_library.delete_library_share('//share_host_01/music')

You may want to check that the deletion has succeeded, by waiting a few seconds, then confirming that the share has
disappeared from the list of shares.

1.3 Frequently Asked Questions

This page contains answers to a few commonly asked questions.

1.3.1 Why can’t I play a URI from music service X with the play_uri() method?

The play_uri()method is only for playing URI’s with un-restricted access such as podcasts, certain radion stations
or sound clips on webpages. In short, the play_uri() method is for anything that will play as a sound file in your
browser without authentication.

To play music from a music service, you will need to go via the music_service module. Here you can search or
browse to obtain music service items, which can be added to the queue and played.

1.3.2 Why can’t I add a URI from music service X to the queue with the
add_uri_to_queue() method?

See Why can’t I play a URI from music service X with the play_uri() method?.

1.3.3 Can I make my Sonos® speaker play music from my local hard drive with
SoCo?

At the face of it, no. Sonos® devices can only play music that is available on the network i.e. can be reached via a
URI. So you have two options:

1. You can share your local music folder onto the network and add it to the Sonos® library as a part of your music
collection, which can then be searched, browsed and played with SoCo.

2. You can cheat and make Python serve the files on the fly and play them as URIs. The play local files example
shows one way in which this can be accomplished.

Warning: Note that this example is meant as a convenient way get started, but that no security pre-
cautions has been taken to e.g. prevent serving other files out into the local network. Take appropriate
actions if this is a concern.

1.3.4 How can I save, then restore the previous playing Sonos state ?

This is useful for scenarios such as when you want to switch to radio, an announcement or doorbell sound and then
back to what was playing previously. Documentation of the Snapshot snapshot module.

SoCo provides a snapshot module that captures the current state of a player and then when requested re-instates that
state. Examples of it’s use are:

1.3. Frequently Asked Questions 9

https://github.com/SoCo/SoCo/blob/master/examples/play_local_files/play_local_files.py

soco Documentation, Release 0.27.0

• basic snap example

• multi zone example

1.4 Plugins

Plugins can extend the functionality of SoCo.

1.4.1 Creating a Plugin

To write a plugin, simply extend the class soco.plugins.SoCoPlugin. The __init__ method of the plugin
should accept an SoCo instance as the first positional argument, which it should pass to its super constructor.

The class soco.plugins.example.ExamplePlugin contains an example plugin implementation.

1.4.2 Using a Plugin

To use a plugin, it can be loaded and instantiated directly.

create a plugin by normal instantiation
from soco.plugins.example import ExamplePlugin

create a new plugin, pass the soco instance to it
myplugin = ExamplePlugin(soco, 'a user')

do something with your plugin
print 'Testing', myplugin.name
myplugin.music_plugin_stop()

Alternatively a plugin can also be loaded by its name using SoCoPlugin.from_name().

get a plugin by name (eg from a config file)
myplugin = SoCoPlugin.from_name('soco.plugins.example.ExamplePlugin',

soco, 'some user')

do something with your plugin
print 'Testing', myplugin.name
myplugin.music_plugin_play()

1.4.3 The SoCoPlugin class

class soco.plugins.SoCoPlugin(soco)
The base class for SoCo plugins.

name
Human-readable name of the plugin

classmethod from_name(fullname, soco, *args, **kwargs)
Instantiate a plugin by its full name.

10 Chapter 1. Contents

https://github.com/SoCo/SoCo/blob/master/examples/snapshot/basic_snap.py
https://github.com/SoCo/SoCo/blob/master/examples/snapshot/multi_zone_snap.py

soco Documentation, Release 0.27.0

1.5 Authors

1.5.1 Project Creator

SoCo was created in 2012 at Music Hack Day Sydney by Rahim Sonawalla

1.5.2 Maintainers

• Lawrence Akka

• Stefan Kögl

• Kenneth Nielsen

• David Harding

1.5.3 Contributors

(alphabetical)

• Petter Aas

• Murali Allada

• Joel Björkman

• Aaron Daubman

• Johan Elmerfjord

• David Harding

• Jeff Hinrichs

• Jeroen Idserda

• Hugo van Kemenade

• Todd Neal

• nixscripter

• Kenneth Nielsen

• Dave O’Connor

• Dennnis O’Reilly

• phut

• Dan Poirier

• Jason Ting

• Peter Toft (pwt)

• Scott G Waters

1.5. Authors 11

soco Documentation, Release 0.27.0

1.6 Speaker Topologies

Sonos speakers can be grouped together, and existing groups can be inspected.

Topology is available from each soco.SoCo instance.

>>> my_player.group
ZoneGroup(

uid='RINCON_000E5879136C01400:58',
coordinator=SoCo("192.168.1.101"),
members={SoCo("192.168.1.101"), SoCo("192.168.1.102")}

)

A group of speakers is represented by a soco.groups.ZoneGroup.

1.6.1 Zone Group

Each ZoneGroup contains its coordinator

>>> my_player.group.coordinator
SoCo("192.168.1.101")

which is again a soco.SoCo instance

>>> my_player.group.coordinator.player_name
Kitchen

A ZoneGroup also contains a set of members.

>>> my_player.group.members
{SoCo("192.168.1.101"), SoCo("192.168.1.102")}

For convenience, ZoneGroup is also a container:

>>> for player in my_player.group:
... print(player.player_name)
Living Room
Kitchen

If you need it, you can get an iterator over all groups on the network:

>>> my_player.all_groups
<generator object all_groups at 0x108cf0c30>

1.7 UPnP Services

Sonos devices offer several UPnP services which are accessible from classes in the soco.services module.

• soco.services.AlarmClock

• soco.services.MusicServices

• soco.services.DeviceProperties

• soco.services.SystemProperties

12 Chapter 1. Contents

soco Documentation, Release 0.27.0

• soco.services.ZoneGroupTopology

• soco.services.GroupManagement

• soco.services.QPlay

• soco.services.ContentDirectory

• soco.services.MS_ConnectionManager

• soco.services.RenderingControl

• soco.services.MR_ConnectionManager

• soco.services.AVTransport

• soco.services.Queue

• soco.services.GroupRenderingControl

All services take a soco.SoCo instance as their first parameter.

1.7.1 Inspecting

To get a list of supported actions you can call the service’s soco.services.Service.iter_actions(). It
yields the service’s actions with their in_arguments (ie parameters to pass to the action) and out_arguments (ie returned
values).

Each action is an soco.services.Action namedtuple, consisting of action_name (a string), in_args (a
list of soco.services.Argument namedtuples consisting of name and argtype), and out_args (ditto), eg:

1.7.2 Events

You can subscribe to the events of a service using the soco.services.Service.subscribe() method. See
Events for details.

1.8 Events

1.8.1 The events_twisted module

The soco.events_twisted module has been provided for those wanting to use soco in an application built on the
twisted framework who want the event listener also to be implemented using twisted. The soco.events_twisted
page contains an example of how to use the module.

The event listener is an HTTP server that receives event notifications from sonos devices. In the soco.events
module, it is implemented using threading and requests. The soco.events module will apply by default, unless
config.EVENTS_MODULE is set to point to the soco.events_twisted module.

Twisted is not a soco dependency. The existence of the events_twisted module is not a recommendation or endorsement
of twisted. The events_twisted module has been provided because there are some soco users who use twisted.

If you wish to use events_twisted, it is assumed you already use and are familiar with the twisted framework. No
guidance is provided here on how to install or use twisted.

The main differences between soco.events_twisted and soco.events are:

• soco.events_twisted uses twisted, rather than requests, for making and receiving HTTP calls. Network
calls in events_twisted return at once without blocking

1.8. Events 13

https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
http://docs.python-requests.org/en/master/

soco Documentation, Release 0.27.0

• in soco.events_twisted, the event listener runs in the main thread of execution. Threading is not used

• soco.events_twisted requires a twisted reactor to be running in the application into which it is imported.
It will not install or start a reactor

• soco.events_twisted is not threadsafe and should run in the main thread of execution. Therefore, sub-
scribing to events should happen in the main thread of execution. In part, this is because a Deferred is not
threadsafe

• in soco.events_twisted, if the requested port is not available, the event_listener will automatically try
the next port, within a maximum range of 100 of the port initially requested

• in soco.events_twisted, subscribe, renew and unsubscribe return a Deferred the result of which will
be the soco.events_twisted.Subscription instance. The Subscription can be accessed by adding a
callback to receive it. In addition, Deferred.subscription is set to refer to the Subscription. This is a simpler and
quicker way to get the Subscription

• in soco.events_twisted, Subscription.callback can be set to refer to a function that will be called each
time a soco.events_base.Event is received by the Subscription. The callback will be passed the Event
as the only parameter. This is likely to be the most convenient way to receive Events. If Subscription.callback is
not set, or is not callable, Events will be put on the Subscription’s event queue, in the same way as for the events
module.

Please note that all network calls in soco (other than those in events_twisted) are made using the requests library, which
blocks. In an application based on twisted, it may be desirable to make these network calls asynchronously, so they
do not block. Two solutions to consider are (a) to use threads when calling other potentially blocking soco methods or
(b) to use a subprocess to handle calls to soco. Twisted provides the deferToThread method for deferring potentially
blocking methods to a thread. If a subprocess is to be used, there will need to be a protocol for communication
between the subprocess and the main application. For a DIY solution, twisted’s NetstringReceiver may be a useful
starting point.

1.8.2 The events_asyncio module

The soco.events_asyncio module has been provided for those wanting to use asyncio for event handling. The
soco.events_asyncio page contains an example of how to use the module.

You can receive events about changes on the Sonos network.

The soco.services.Service.subscribe() method of a service now returns a soco.events.
Subscription object. To unsubscribe, call the soco.events.Subscription.unsubscribe() method
on the returned object.

Each subscription has its own queue. Events relevant to that subscription are put onto that queue, which can be
accessed from subscription.events.get().

Some XML parsing is done for you when you retrieve an event from the event queue. The get and get_nowait
methods will return a dict with keys which are the evented variables and values which are the values sent by the event.

See the events_twisted module page for more information about soco.events_twisted.

See the events_asyncio module page for more information about soco.events_asyncio.

1.8.3 Example: setting up

1.8.3.1 soco.events

14 Chapter 1. Contents

http://twistedmatrix.com/documents/current/core/howto/reactor-basics.html
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
http://docs.python-requests.org/en/master/
http://twistedmatrix.com/documents/current/api/twisted.internet.threads.deferToThread.html
http://twistedmatrix.com/documents/current/api/twisted.protocols.basic.NetstringReceiver.html

soco Documentation, Release 0.27.0

from queue import Empty

import soco
from soco.events import event_listener
import logging
logging.basicConfig(level=logging.DEBUG)
pick a device
device = soco.discover().pop()
Subscribe to ZGT events
sub = device.zoneGroupTopology.subscribe()

print out the events as they arise
while True:

try:
event = sub.events.get(timeout=0.5)
print(event)
print(event.sid)
print(event.seq)

except Empty:
pass

except KeyboardInterrupt:
sub.unsubscribe()
event_listener.stop()
break

1.8.3.2 soco.events_twisted

import soco
from soco import events_twisted
soco.config.EVENTS_MODULE = events_twisted
from twisted.internet import reactor
import logging
logging.basicConfig(level=logging.DEBUG)

def print_event(event):
print (event)
print(event.sid)
print(event.seq)

def main():
pick a device
device = soco.discover().pop()
Subscribe to ZGT events
sub = device.zoneGroupTopology.subscribe().subscription
print out the events as they arise
sub.callback = print_event

def before_shutdown():
sub.unsubscribe()
events_twisted.event_listener.stop()

reactor.addSystemEventTrigger(
'before', 'shutdown', before_shutdown)

if __name__=='__main__':
(continues on next page)

1.8. Events 15

soco Documentation, Release 0.27.0

(continued from previous page)

reactor.callWhenRunning(main)
reactor.run()

1.8.3.3 soco.events_asyncio

See soco.events_asyncio for a setup example.

1.8.4 Examples: specific features

1.8.4.1 Autorenewal

A Subscription may be granted by the Sonos system for a finite time. Unless it is renewed before it times out, the
subscription will become defunct once it times out. To avoid this, the autorenewal feature can be used. If the auto-
renew flag is set to True, the subscription will automatically renew when 85% of its time has expired.

soco.events:

sub = device.renderingControl.subscribe(auto_renew=True)

soco.events_twisted:

sub = device.renderingControl.subscribe(auto_renew=True).subscription

1.8.4.2 Timeout

When subscribing for events, a timeout of a specific duration can be requested.

soco.events:

sub = device.renderingControl.subscribe(requested_timeout=60) # 60 seconds

soco.events_twisted:

sub = device.renderingControl.subscribe(requested_timeout=60).subscription

1.8.4.3 Renewal

To renew without relying on autorenewal, the renew method can be used:

sub.renew(requested_timeout=10)

1.8.4.4 Autorenew failure

If you want your application to respond to an autorenew failure (for example if the Sonos system dropped off the
network), you can set an optional callback that will be called with the exception that occurred on the attempted
autorenew:

16 Chapter 1. Contents

soco Documentation, Release 0.27.0

import logging
logging.basicConfig()
log = logging.getLogger(__name__)

def errback(exception): # events_twisted: failure
msg = 'Error received on autorenew: {}'.format(str(exception))
Redundant, as the exception will be logged by the events module
log.exception(msg)

sub.auto_renew_fail=errback

Note: In soco.events the auto_renew_fail function will be called from a thread, so it must be threadsafe.

1.8.4.5 Lenient error handling

By default, if an exception occurs when subscribing, renewing or unsubscribing a subscription, the exception will be
raised. This can be changed so the exception is logged instead, by setting the strict flag to be false:

sub.unsubscribe(strict=False)

1.8.4.6 Events_twisted: adding callbacks and errbacks

If the events_twisted module is used, subscribe, renew and unsubscribe return a Deferred, the result of which will be
the Subscription instance. Callbacks and errbacks can be added in the usual way:

device.renderingControl.subscribe().addCallback(myCallback).addErrback(
myErrback)

1.9 The Music Library Data Structures

This page contains a thorough introduction to the data structures used for the music library items1. The data structures
are implemented in the soco.data_structures module and they are used to represent the metadata for music
items, such as music tracks, albums, genres and playlists.

Many music related items have a lot of metadata in common. For example, a music track and an album may both have
artist and title metadata. It is therefore possible and useful to derive a hierarchy of items, and to implement them as a
class hierarchy. The hierarchy which Sonos has adopted is represented by the DIDL Lite xml schema (DIDL stands
for ‘Digital Item Description Language’. For more details, see the UPnP specifications (PDF).

In the data_structuresmodule, each class represents a particular DIDL-Lite object and is illustrated in the figure
below. The black lines are the lines of inheritance, going from left to right.

1 Text of the first footnote.

1.9. The Music Library Data Structures 17

https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
http://www.upnp.org/schemas/av/didl-lite-v2.xsd
http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v1-Service.pdf

soco Documentation, Release 0.27.0

DidlAlbum DidlMusicAlbum

DidlContainer

DidlAlbumList

DidlPerson

DidlGenre

DidlPlaylistContainer

DidlRadioShow

DidlAudioBook

DidlAudioItem
DidlAudioBroadcast

DidlMusicTrack

DidlAudioBroadcastFavorite
DidlItem

DidlFavorite

DidlComposer

DidlMusicArtist

DidlObject

DidlMusicGenre

DidlMetaClass

DidlMusicAlbumCompilation

DidlMusicAlbumFavorite

DidlRecentShow

DidlPlaylistContainerFavorite

DidlPlaylistContainerTracklist

DidlSameArtist

DidlResource

ListOfMusicInfoItems
Queue

SearchResult

All data structures are subclasses of the abstract Didl Object item class. You should never need to instantiate
this directly. The subclasses are divided into Containers and Items. In general, Containers are things, like
playlists, which are intended to contain other items.

At the bottom of the class hierarchy are 10 types of DIDL items. On each of these classes, relevant metadata items
are available as attributes (though they may be implemented as properties). Each has a title, a URI, an item id
and a UPnP class. Some have other attributes. For example, DidlMusicTrack and DidlMusicAlbum have
some extra fields such as album, album_art_uri and creator.

One of the more important attributes which each class has is didl_metadata. It is used to produce the metadata
that is sent to the Sonos® units in the form of XML. This metadata is created in an almost identical way for each
class, which is why it is implemented in DidlObject. It uses the URI, the UPnP class and the title that the items
are instantiated with, along with the two class variables parent_id and _translation.

1.10 soco package

1.10.1 Subpackages

1.10.1.1 soco.music_services package

Submodules

18 Chapter 1. Contents

soco Documentation, Release 0.27.0

soco.music_services.accounts module

This module contains classes relating to Third Party music services.

class soco.music_services.accounts.Account
An account for a Music Service.

Each service may have more than one account: see the Sonos release notes for version 5-2

service_type = None
A unique identifier for the music service to which this account relates, eg '2311' for Spotify.

Type str

serial_number = None
A unique identifier for this account

Type str

nickname = None
The account’s nickname

Type str

deleted = None
True if this account has been deleted

Type bool

username = None
The username used for logging into the music service

Type str

metadata = None
Metadata for the account

Type str

oa_device_id = None
Used for OpenAuth id for some services

Type str

key = None
Used for OpenAuthid for some services

Type str

classmethod get_accounts(soco=None)
Get all accounts known to the Sonos system.

Parameters soco (SoCo, optional) – a SoCo instance to query. If None, a random instance is
used. Defaults to None.

Returns A dict containing account instances. Each key is the account’s serial number, and each
value is the related Account instance. Accounts which have been marked as deleted are
excluded.

Return type dict

Note: Any existing Account instance will have its attributes updated to those currently stored on the
Sonos system.

1.10. soco package 19

http://www.sonos.com/en-gb/software/release/5-2
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict

soco Documentation, Release 0.27.0

classmethod get_accounts_for_service(service_type)
Get a list of accounts for a given music service.

Parameters service_type (str) – The service_type to use.

Returns A list of Account instances.

Return type list

soco.music_services.token_store module

This module implements token stores for the music services

A user can provide their own token store depending on how that person wishes to save the tokens, or use the builtin
token store (the default) which saves the tokens in a config file.

class soco.music_services.token_store.TokenStoreBase(token_collection=’default’)
Token store base class

Instantiate instance variables

Parameters token_collection (str) – The name of the token collection to use. This may be
used to store different token collections for different client programs.

save_token_pair(music_service_id, household_id, token_pair)
Save a token value pair (token, key) which is a 2 item sequence

load_token_pair(music_service_id, household_id)
Load a token pair (token, key) which is a 2 item sequence

has_token(music_service_id, household_id)
Return True if a token is stored for the music service and household ID

class soco.music_services.token_store.JsonFileTokenStore(filepath, to-
ken_collection=’default’)

Implementation of a token store around a JSON file

Instantiate instance variables

Parameters token_collection (str) – The name of the token collection to use. This may be
used to store different token collections for different client programs.

classmethod from_config_file(token_collection=’default’)
Load from file in config directory location

Parameters token_collection (str) – The name of the token collection to use. This may
be used to store different token collections for different client programs.

save_collection()
Save the collection to a config file

save_token_pair(music_service_id, household_id, token_pair)
Save a token value pair (token, key) which is a 2 item sequence

load_token_pair(music_service_id, household_id)
Load a token pair (token, key) which is a 2 item sequence

has_token(music_service_id, household_id)
Return True if a token is stored for the music service

20 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

soco.music_services.music_service module

Sonos Music Services interface.

This module provides the MusicService class and related functionality.

Known problems:

1. Not all music services follow the pattern layout for the authentication information completely. This means that
it might be necessary to tweak the code for individual services. This is an unfortunate result of Sonos not
enforcing data hygiene of its services. The implication for SoCo is that getting all services to work will require
more effort and the kind of broader testing we will only get by putting the code out there. Hence, if you are an
early adopter of the music service code (added in version 0.26) consider yourselves guinea pigs.

2. There currently is no way to reset an authentication, at least when authentication has been performed for TIDAL
(which uses device link authentication), after it has been done once for a particular household ID, it fails on
subsequent attempts. What this might mean is that if you lose the authentication tokens for such a service, it
may not be possible to generate new ones. Obviously, some method must exist to reset this, but it is not presently
implemented.

class soco.music_services.music_service.MusicServiceSoapClient(endpoint,
timeout, mu-
sic_service,
token_store,
device=None)

A SOAP client for accessing Music Services.

This class handles all the necessary authentication for accessing third party music services. You are unlikely to
need to use it yourself.

Parameters

• endpoint (str) – The SOAP endpoint. A url.

• timeout (int) – Timeout the connection after this number of seconds

• music_service (MusicService) – The MusicService object to which this client be-
longs.

• token_store (TokenStoreBase) – A token store instance. The token store is an
instance of a subclass of TokenStoreBase

• device (SoCo) – (Optional) If provided this device will be used for the communication;
if not, the device returned by discovery.any_soco will be used

get_soap_header()
Generate the SOAP authentication header for the related service.

This header contains all the necessary authentication details.

Returns

A string representation of the XML content of the SOAP header.

Return type str

call(method, args=None)
Call a method on the server.

Parameters

• method (str) – The name of the method to call.

1.10. soco package 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

• args (List[Tuple[str, str]] or None) – A list of (parameter, value) pairs
representing the parameters of the method. Defaults to None.

Returns An OrderedDict representing the response.

Return type OrderedDict

Raises MusicServiceException – containing details of the error returned by the music
service.

begin_authentication()
Perform the first part of a Device or App Link authentication session

See begin_authentication for details

complete_authentication(link_code, link_device_id=None)
Completes a previously initiated authentication session

See complete_authentication for details

class soco.music_services.music_service.MusicService(service_name, to-
ken_store=None, de-
vice=None)

The MusicService class provides access to third party music services.

Example

List all the services Sonos knows about:

>>> from soco.music_services import MusicService
>>> print(MusicService.get_all_music_services_names())
['Spotify', 'The Hype Machine', 'Saavn', 'Bandcamp',
'Stitcher SmartRadio', 'Concert Vault',
...
]

Interact with TuneIn:

>>> tunein = MusicService('TuneIn')
>>> print (tunein)
<MusicService 'TuneIn' at 0x10ad84e10>

Browse an item. By default, the root item is used. An SearchResult is returned (the output of print is here
indented for easier reading):

>>> print(tunein.get_metadata())
SearchResult(
items=[

<soco.music_services.data_structures.MSContainer object at 0x7f58b038ac10>,
<soco.music_services.data_structures.MSContainer object at 0x7f58b038a340>,
<soco.music_services.data_structures.MSContainer object at 0x7f58b038a6d0>,
<soco.music_services.data_structures.MSContainer object at 0x7f58b038a310>,
<soco.music_services.data_structures.MSContainer object at 0x7f58b038a100>,
<soco.music_services.data_structures.MSContainer object at 0x7f58b038a910>

],
search_type='browse'

)

Interact with Spotify (assuming you are subscribed):

22 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.html#collections.OrderedDict

soco Documentation, Release 0.27.0

>>> spotify = MusicService('Spotify')

Get some metadata about a specific track:

>>> response = spotify.get_media_metadata(
... item_id='spotify:track:6NmXV4o6bmp704aPGyTVVG')
>>> print(dumps(response, indent=4))
{

"mediaMetadata": {
"id": "spotify:track:6NmXV4o6bmp704aPGyTVVG",
"itemType": "track",
"title": "Bøn Fra Helvete (Live)",
"mimeType": "audio/x-spotify",
"trackMetadata": {

"artistId": "spotify:artist:1s1DnVoBDfp3jxjjew8cBR",
"artist": "Kaizers Orchestra",
"albumId": "spotify:album:6K8NUknbPh5TGaKeZdDwSg",
"album": "Mann Mot Mann (Ep)",
"duration": "317",
"albumArtURI":
"http://o.scdn.co/image/7b76a5074416e83fa3f3cd...9",
"canPlay": "true",
"canSkip": "true",
"canAddToFavorites": "true"

}
}

}
or even a playlist:

>>> response = spotify.get_metadata(
... item_id='spotify:user:spotify:playlist:0FQk6BADgIIYd3yTLCThjg')

Find the available search categories, and use them:

>>> print(spotify.available_search_categories)
['albums', 'tracks', 'artists']
>>> result = spotify.search(category='artists', term='miles')

Note: Some of this code is still unstable, and in particular the data structures returned by methods such as
get_metadata may change in future.

Parameters

• service_name (str) – The name of the music service, as returned by
get_all_music_services_names(), eg ‘Spotify’, or ‘TuneIn’

• token_store (TokenStoreBase) – A token store instance. If none is given, it will
default to an instance of the JsonFileTokenStore using the ‘default’ token collection.
The token store must be an instance of a subclass of TokenStoreBase.

• device (SoCo) – (Optional) If provided this device will be used for the communication,
if not the device returned by discovery.any_soco will be used

Raises MusicServiceException

1.10. soco package 23

https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

classmethod get_all_music_services_names()
Get a list of the names of all available music services.

These services have not necessarily been subscribed to.

Returns A list of strings.

Return type list

classmethod get_data_for_name(service_name)
Get the data relating to a named music service.

Parameters service_name (str) – The name of the music service for which data is re-
quired.

Returns Data relating to the music service.

Return type dict

Raises MusicServiceException – if the music service cannot be found.

available_search_categories
The list of search categories (each a string) supported.

May include 'artists', 'albums', 'tracks', 'playlists', 'genres', 'stations',
'tags', or others depending on the service. Some services, such as Spotify, support 'all', but do
not advertise it.

Any of the categories in this list may be used as a value for category in search().

Example

>>> print(spotify.available_search_categories)
['albums', 'tracks', 'artists']
>>> result = spotify.search(category='artists', term='miles')

Type list

sonos_uri_from_id(item_id)
Get a uri which can be sent for playing.

Parameters item_id (str) – The unique id of a playable item for this mu-
sic service, such as that returned in the metadata from get_metadata, eg
spotify:track:2qs5ZcLByNTctJKbhAZ9JE

Returns A URI of the form: soco://spotify%3Atrack
%3A2qs5ZcLByNTctJKbhAZ9JE?sid=2311&sn=1 which encodes the item_id,
and relevant data from the account for the music service. This URI can be sent to a Sonos
device for playing, and the device itself will retrieve all the necessary metadata such as title,
album etc.

Return type str

desc
The Sonos descriptor to use for this service.

The Sonos descriptor is used as the content of the <desc> tag in DIDL metadata, to indicate the relevant
music service id.

Type str

24 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

begin_authentication()
Perform the first part of a Device or App Link authentication session

This result of this is an authentication URL, which a user needs visit and complete the necessary authenti-
cation on and then proceed to complete_authentication

Note: The begin_authentication and complete_authentication methods must be com-
pleted on the same ‘MusicService‘ instance unless the link_code and link_device_id values
are passed to complete_authentication. These two values can be found as attributes on the
MusicService instance after begin_authentication has been executed.

Returns Registration URL used for service linking.

Return type str

complete_authentication(link_code=None, link_device_id=None)
Completes a previously initiated device or app link authentication session

This method is the second part of a two-step authentication process, see begin_authentication for
details on the first part.

Parameters

• link_code (str, optional) – A link code generated from begin_authentication. If
not provided, cached code will be used.

• link_device_id (str, optional) – A link device ID generated from be-
gin_authentication. If not provided, cached device ID will be used.

get_metadata(item=’root’, index=0, count=100, recursive=False)
Get metadata for a container or item.

Parameters

• item (str or MusicServiceItem) – The container or item to browse given either
as a MusicServiceItem instance or as a str. Defaults to the root item.

• index (int) – The starting index. Default 0.

• count (int) – The maximum number of items to return. Default 100.

• recursive (bool) – Whether the browse should recurse into sub-items (Does not al-
ways work). Defaults to False.

Returns The item or container’s metadata, or None.

Return type OrderedDict

See also:

The Sonos getMetadata API.

search(category, term=”, index=0, count=100)
Search for an item in a category.

Parameters

• category (str) – The search category to use. Standard Sonos search categories are
‘artists’, ‘albums’, ‘tracks’, ‘playlists’, ‘genres’, ‘stations’, ‘tags’. Not all are available for
each music service. Call available_search_categories for a list for this service.

• term (str) – The term to search for.

1.10. soco package 25

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.html#collections.OrderedDict
http://musicpartners.sonos.com/node/83
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

• index (int) – The starting index. Default 0.

• count (int) – The maximum number of items to return. Default 100.

Returns The search results, or None.

Return type OrderedDict

See also:

The Sonos search API

get_media_metadata(item_id)
Get metadata for a media item.

Parameters item_id (str) – The item for which metadata is required.

Returns The item’s metadata, or None

Return type OrderedDict

See also:

The Sonos getMediaMetadata API

get_media_uri(item_id)
Get a streaming URI for an item.

Note: You should not need to use this directly. It is used by the Sonos players (not the controllers) to
obtain the uri of the media stream. If you want to have a player play a media item, you should add it to the
queue using its id and let the player work out where to get the stream from (see On Demand Playback and
Programmed Radio)

Parameters item_id (str) – The item for which the URI is required

Returns The item’s streaming URI.

Return type str

get_last_update()
Get last_update details for this music service.

Returns A dict with keys ‘catalog’, and ‘favorites’. The value of each is a string which changes
each time the catalog or favorites change. You can use this to detect when any caches need
to be updated.

Return type OrderedDict

get_extended_metadata(item_id)
Get extended metadata for a media item, such as related items.

Parameters item_id (str) – The item for which metadata is required.

Returns The item’s extended metadata or None.

Return type OrderedDict

See also:

The Sonos getExtendedMetadata API

get_extended_metadata_text(item_id, metadata_type)
Get extended metadata text for a media item.

26 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.html#collections.OrderedDict
http://musicpartners.sonos.com/node/86
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.html#collections.OrderedDict
http://musicpartners.sonos.com/node/83
http://musicpartners.sonos.com/node/421
http://musicpartners.sonos.com/node/422
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.html#collections.OrderedDict
http://musicpartners.sonos.com/node/128

soco Documentation, Release 0.27.0

Parameters

• item_id (str) – The item for which metadata is required

• metadata_type (str) – The type of text to return, eg

• or 'ALBUM_NOTES'. Calling ('ARTIST_BIO',) –

• for the item will show which extended (get_extended_metadata)
–

• are available (metadata_types) –

Returns The item’s extended metadata text or None

Return type str

See also:

The Sonos getExtendedMetadataText API

1.10.1.2 soco.plugins package

Submodules

soco.plugins.example module

Example implementation of a plugin.

class soco.plugins.example.ExamplePlugin(soco, username)
This file serves as an example of a SoCo plugin.

Initialize the plugin.

The plugin can accept any arguments it requires. It should at least accept a soco instance which it passes on to
the base class when calling super’s __init__.

name
Human-readable name of the plugin

music_plugin_play()
Play some music.

This is just a reimplementation of the ordinary play function, to show how we can use the general upnp
methods from soco

music_plugin_stop()
Stop the music.

This methods shows how, if we need it, we can use the soco functionality from inside the plugins

soco.plugins.spotify module

The Spotify plugin has been DEPRECATED

The Spotify Plugin has been immediately deprecated (August 2016), because the API it was based on (The Spotify
Metadata API) has been ended. Since this rendered the plug-in broken, there was no need to forewarn of the depreca-
tion.

1.10. soco package 27

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://musicpartners.sonos.com/node/127

soco Documentation, Release 0.27.0

Please consider moving to the new general music services code (in soco.music_services.music_service), that makes it
possible to retrived information about the available media from all music services. A short intro for how to use the
new code is available in the API documentation:

• http://docs.python-soco.com/en/latest/api/soco.music_services.music_service.html

and for some information about how to add items from the music services to the queue, see this gist:

• https://gist.github.com/lawrenceakka/2d21dca590b4fa7e3af2”

This deprecation notification will be deleted for the second release after 0.12.

soco.plugins.wimp module

Plugin for the Wimp music service (Service ID 20)

class soco.plugins.wimp.Wimp(soco, username, retries=3, timeout=3.0)
Class that implements a Wimp plugin.

Note: There is an (apparent) in-consistency in the use of one data type from the Wimp service. When searching
for playlists, the XML returned by the Wimp server indicates, that the type is an ‘album list’, and it thus suggest,
that this type is used for a list of tracks (as expected for a playlist), and this data type is reported to be playable.
However, when browsing the music tree, the Wimp server will return items of ‘album list’ type, but in this case
it is used for a list of albums and it is not playable. This plugin maintains this (apparent) in-consistency to stick
as close to the reported data as possible, so search for playlists returns MSAlbumList that are playable and while
browsing the content tree the MSAlbumList items returned to you are not playable.

Note: Wimp in some cases lists tracks that are not available. In these cases, while it will correctly report these
tracks as not being playable, the containing data structure like e.g. the album they are on may report that they
are playable. Trying to add one of these to the queue will return a SoCoUPnPException with error code ‘802’.

Initialize the plugin.

Parameters

• soco – The soco instance to retrieve the session ID for the music service

• username (str) – The username for the music service

• retries (int) – The number of times to retry before giving up

• timeout (float) – The time to wait for the post to complete, before timing out. The
Wimp server seems either slow to respond or to make the queries internally, so the timeout
should probably not be shorter than 3 seconds.

Type soco.SoCo

Note: If you are using a phone number as the username and are experiencing problems connecting, then try to
prepend the area code (no + or 00). I.e. if your phone number is 12345678 and you are from denmark, then use
4512345678. This must be set up the same way in the Sonos device. For details see here (In Danish)

name
Return the human read-able name for the plugin

28 Chapter 1. Contents

http://docs.python-soco.com/en/latest/api/soco.music_services.music_service.html
https://gist.github.com/lawrenceakka/2d21dca590b4fa7e3af2
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://wimp.zendesk.com/hc/da/articles/204311810-Hvorfor-kan-jeg-ikke-logge-p%C3%A5-WiMP-med-min-Sonos-n%C3%A5r-jeg-har-et-gyldigt-abonnement-

soco Documentation, Release 0.27.0

username
Return the username.

service_id
Return the service id.

description
Return the music service description for the DIDL metadata on the form 'SA_RINCON5127_...self.
username...'

get_tracks(search, start=0, max_items=100)
Search for tracks.

See get_music_service_information for details on the arguments

get_albums(search, start=0, max_items=100)
Search for albums.

See get_music_service_information for details on the arguments

get_artists(search, start=0, max_items=100)
Search for artists.

See get_music_service_information for details on the arguments

get_playlists(search, start=0, max_items=100)
Search for playlists.

See get_music_service_information for details on the arguments.

Note: Un-intuitively this method returns MSAlbumList items. See note in class doc string for details.

get_music_service_information(search_type, search, start=0, max_items=100)
Search for music service information items.

Parameters

• search_type (str) – The type of search to perform, possible values are: ‘artists’,
‘albums’, ‘tracks’ and ‘playlists’

• search (str) – The search string to use

• start (int) – The starting index of the returned items

• max_items (int) – The maximum number of returned items

Note: Un-intuitively the playlist search returns MSAlbumList items. See note in class doc string for
details.

browse(ms_item=None)
Return the sub-elements of item or of the root if item is None

Parameters item – Instance of sub-class of soco.data_structures.
MusicServiceItem. This object must have item_id, service_id and extended_id
properties

Note: Browsing a MSTrack item will return itself.

1.10. soco package 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

soco Documentation, Release 0.27.0

Note: This plugin cannot yet set the parent ID of the results correctly when browsing soco.
data_structures.MSFavorites and soco.data_structures.MSCollection elements.

static id_to_extended_id(item_id, item_class)
Return the extended ID from an ID.

Parameters

• item_id (str) – The ID of the music library item

• cls (Sub-class of soco.data_structures.MusicServiceItem) – The class of
the music service item

The extended id can be something like 00030020trackid_22757082 where the id is just trackid_22757082.
For classes where the prefix is not known returns None.

static form_uri(item_content, item_class)
Form the URI for a music service element.

Parameters

• item_content (dict) – The content dict of the item

• item_class (Sub-class of soco.data_structures.MusicServiceItem) –
The class of the item

soco.plugins.sharelink module

ShareLink Plugin.

class soco.plugins.sharelink.ShareClass
Base class for supported services.

canonical_uri(uri)
Recognize a share link and return its canonical representation.

Parameters uri (str) – A URI like “https://tidal.com/browse/album/157273956”.

Returns The canonical URI or None if not recognized.

Return type str

service_number()
Return the service number.

Returns A number identifying the supported music service.

Return type int

static magic()
Return magic.

Returns Magic prefix/key/class values for each share type.

Return type dict

extract(uri)
Extract the share type and encoded URI from a share link.

Returns The shared type, like “album” or “track”. encoded_uri: An escaped URI with a service-
specific format.

30 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://tidal.com/browse/album/157273956
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

soco Documentation, Release 0.27.0

Return type share_type

class soco.plugins.sharelink.SpotifyShare
Spotify share class.

canonical_uri(uri)
Recognize a share link and return its canonical representation.

Parameters uri (str) – A URI like “https://tidal.com/browse/album/157273956”.

Returns The canonical URI or None if not recognized.

Return type str

service_number()
Return the service number.

Returns A number identifying the supported music service.

Return type int

extract(uri)
Extract the share type and encoded URI from a share link.

Returns The shared type, like “album” or “track”. encoded_uri: An escaped URI with a service-
specific format.

Return type share_type

class soco.plugins.sharelink.SpotifyUSShare
Spotify US share class.

service_number()
Return the service number.

Returns A number identifying the supported music service.

Return type int

class soco.plugins.sharelink.TIDALShare
TIDAL share class.

canonical_uri(uri)
Recognize a share link and return its canonical representation.

Parameters uri (str) – A URI like “https://tidal.com/browse/album/157273956”.

Returns The canonical URI or None if not recognized.

Return type str

service_number()
Return the service number.

Returns A number identifying the supported music service.

Return type int

extract(uri)
Extract the share type and encoded URI from a share link.

Returns The shared type, like “album” or “track”. encoded_uri: An escaped URI with a service-
specific format.

Return type share_type

1.10. soco package 31

https://docs.python.org/3/library/stdtypes.html#str
https://tidal.com/browse/album/157273956
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://tidal.com/browse/album/157273956
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

soco Documentation, Release 0.27.0

class soco.plugins.sharelink.DeezerShare
Deezer share class.

canonical_uri(uri)
Recognize a share link and return its canonical representation.

Parameters uri (str) – A URI like “https://tidal.com/browse/album/157273956”.

Returns The canonical URI or None if not recognized.

Return type str

service_number()
Return the service number.

Returns A number identifying the supported music service.

Return type int

extract(uri)
Extract the share type and encoded URI from a share link.

Returns The shared type, like “album” or “track”. encoded_uri: An escaped URI with a service-
specific format.

Return type share_type

class soco.plugins.sharelink.AppleMusicShare
Apple Music share class.

canonical_uri(uri)
Recognize a share link and return its canonical representation.

Parameters uri (str) – A URI like “https://tidal.com/browse/album/157273956”.

Returns The canonical URI or None if not recognized.

Return type str

service_number()
Return the service number.

Returns A number identifying the supported music service.

Return type int

extract(uri)
Extract the share type and encoded URI from a share link.

Returns The shared type, like “album” or “track”. encoded_uri: An escaped URI with a service-
specific format.

Return type share_type

class soco.plugins.sharelink.ShareLinkPlugin(soco)
A SoCo plugin for playing music service share links.

Initialize the plugin.

name
Human-readable name of the plugin

is_share_link(uri)
bool: Is the URI for a supported music service.

32 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://tidal.com/browse/album/157273956
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://tidal.com/browse/album/157273956
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

soco Documentation, Release 0.27.0

add_share_link_to_queue(uri, position=0, as_next=False)
Add a Spotify/Tidal/. . . item to the queue.

This is similar to soco.add_uri_to_queue() but will work with music service share links that do not directly
point to sound files.

Parameters

• uri (str) – A URI like “spotify:album:6wiUBliPe76YAVpNEdidpY”.

• position (int) – The index (1-based) at which the URI should be added. Default is 0
(add URI at the end of the queue).

• as_next (bool) – Whether this URI should be played as the next track in shuffle mode.
This only works if “play_mode=SHUFFLE”.

Returns The index of the new item in the queue.

Return type int

soco.plugins.plex module

This plugin supports playback from a linked Plex music service. See: https://support.plex.tv/articles/
218168898-installing-plex-for-sonos/

Requires:

• Plex music service must be linked in the Sonos app

• Use of ‘plexapi’ library (https://github.com/pkkid/python-plexapi)

• Plex server URI used in ‘plexapi’ must be reachable from Sonos speakers

Example usage:

>>> from plexapi.server import PlexServer
>>> from soco import SoCo
>>> from soco.plugins.plex import PlexPlugin
>>>
>>> s = SoCo("<SPEAKER_IP>")
>>> plugin = PlexPlugin(s)
>>>
>>> plex_uri = "http://1.2.3.4:32400"
>>> plex_token = "<YOUR_PLEX_TOKEN>"
>>> plex = PlexServer(plex_uri, token=plex_token)
>>> music = plex.library.section("Music")
>>> artist = music.get("Stevie Wonder")
>>> album = artist.album("Innervisions")
>>> track = album.tracks()[4]
>>> playlist = plex.playlist("My Playlist")
>>>
>>> plugin.play_now(artist) # Play all tracks from an artist
>>> plugin.add_to_queue(track) # Add track to the end of queue
>>> pos = plugin.add_to_queue([album, playlist]) # Enqueue multiple
>>> s.play_from_queue(pos) # Play items just enqueued

class soco.plugins.plex.PlexPlugin(soco)
A SoCo plugin for playing Plex media using the plexapi library.

Initialize the plugin.

1.10. soco package 33

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://support.plex.tv/articles/218168898-installing-plex-for-sonos/
https://support.plex.tv/articles/218168898-installing-plex-for-sonos/
https://github.com/pkkid/python-plexapi

soco Documentation, Release 0.27.0

name
Return the name of the plugin.

service_name
Return the service name of the Plex music service.

service_info
Cache and return the service info of the Plex music service.

service_id
Return the service ID of the Plex music service.

service_type
Return the service type of the Plex music service.

play_now(plex_media)
Add the media to the end of the queue and immediately begin playback.

add_to_queue(plex_media, position=0, as_next=False)
Add the provided media to the speaker’s playback queue.

Parameters

• plex_media (plexapi) – The plexapi object representing the Plex media to be en-
queued. Can be one of plexapi.audio.Track, plexapi.audio.Album, plexapi.audio.Artist or
plexapi.playlist.Playlist. Can also be a list of the above items.

• position (int) – The index (1-based) at which the media should be added. Default is
0 (append to the end of the queue).

• as_next (bool) – Whether this media should be played as the next track in shuffle
mode. This only works if “play_mode=SHUFFLE”.

Note: Enqueuing multi-track items like albums or playlists will select one track randomly
as the next item and shuffle the remaining tracks throughout the queue.

Returns The index of the first item added to the queue.

Return type int

Module contents

This is the __init__ module for the plugins.

It contains the base class for all plugins

class soco.plugins.SoCoPlugin(soco)
The base class for SoCo plugins.

name
Human-readable name of the plugin

classmethod from_name(fullname, soco, *args, **kwargs)
Instantiate a plugin by its full name.

1.10.2 Submodules

1.10.2.1 soco.alarms module

This module contains classes relating to Sonos Alarms.

34 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

soco Documentation, Release 0.27.0

soco.alarms.is_valid_recurrence(text)
Check that text is a valid recurrence string.

A valid recurrence string is DAILY, ONCE, WEEKDAYS, WEEKENDS or of the form ON_DDDDDD where D is a
number from 0-6 representing a day of the week (Sunday is 0), e.g. ON_034 meaning Sunday, Wednesday and
Thursday

Parameters text (str) – the recurrence string to check.

Returns True if the recurrence string is valid, else False.

Return type bool

Examples

>>> from soco.alarms import is_valid_recurrence
>>> is_valid_recurrence('WEEKENDS')
True
>>> is_valid_recurrence('')
False
>>> is_valid_recurrence('ON_132') # Mon, Tue, Wed
True
>>> is_valid_recurrence('ON_666') # Sat
True
>>> is_valid_recurrence('ON_3421') # Mon, Tue, Wed, Thur
True
>>> is_valid_recurrence('ON_123456789') # Too many digits
False

class soco.alarms.Alarms
A class representing all known Sonos Alarms.

Is a singleton and every Alarms() object will return the same instance.

Example use:

>>> get_alarms()
{469: <Alarm id:469@22:07:41 at 0x7f5198797dc0>,
470: <Alarm id:470@22:07:46 at 0x7f5198797d60>}
>>> alarms = Alarms()
>>> alarms.update()
>>> alarms.alarms
{469: <Alarm id:469@22:07:41 at 0x7f5198797dc0>,
470: <Alarm id:470@22:07:46 at 0x7f5198797d60>}

>>> for alarm in alarms:
... alarm
...
<Alarm id:469@22:07:41 at 0x7f5198797dc0>
<Alarm id:470@22:07:46 at 0x7f5198797d60>
>>> alarms[470]
<Alarm id:470@22:07:46 at 0x7f5198797d60>
>>> new_alarm = Alarm(zone)
>>> new_alarm.save()
471
>>> new_alarm.recurrence = "ONCE"
>>> new_alarm.save()
471
>>> alarms.alarms

(continues on next page)

1.10. soco package 35

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

soco Documentation, Release 0.27.0

(continued from previous page)

{469: <Alarm id:469@22:07:41 at 0x7f5198797dc0>,
470: <Alarm id:470@22:07:46 at 0x7f5198797d60>,
471: <Alarm id:471@22:08:40 at 0x7f51987f1b50>}
>>> alarms[470].remove()
>>> alarms.alarms
{469: <Alarm id:469@22:07:41 at 0x7f5198797dc0>,
471: <Alarm id:471@22:08:40 at 0x7f51987f1b50>}
>>> for alarm in alarms:
... alarm.remove()
...
>>> a.alarms
{}

Initialize the instance.

last_alarm_list_version
Return last seen alarm list version.

get(alarm_id)
Return the alarm by ID or None.

update(zone=None)
Update all alarms and current alarm list version.

Raises SoCoException – If the ‘CurrentAlarmListVersion’ value is unexpected. May occur
if the provided zone is from a different household.

class soco.alarms.Alarm(zone, start_time=None, duration=None, recurrence=’DAILY’,
enabled=True, program_uri=None, program_metadata=”,
play_mode=’NORMAL’, volume=20, include_linked_zones=False)

A class representing a Sonos Alarm.

Alarms may be created or updated and saved to, or removed from the Sonos system. An alarm is not automati-
cally saved. Call save() to do that.

Parameters

• zone (SoCo) – The soco instance which will play the alarm.

• start_time (datetime.time, optional) – The alarm’s start time. Specify hours,
minutes and seconds only. Defaults to the current time.

• duration (datetime.time, optional) – The alarm’s duration. Specify hours,
minutes and seconds only. May be None for unlimited duration. Defaults to None.

• recurrence (str, optional) – A string representing how often the alarm should be
triggered. Can be DAILY, ONCE, WEEKDAYS, WEEKENDS or of the form ON_DDDDDD
where D is a number from 0-6 representing a day of the week (Sunday is 0), e.g. ON_034
meaning Sunday, Wednesday and Thursday. Defaults to DAILY.

• enabled (bool, optional) – True if alarm is enabled, False otherwise. Defaults
to True.

• program_uri (str, optional) – The uri to play. If None, the built-in Sonos chime
sound will be used. Defaults to None.

• program_metadata (str, optional) – The metadata associated with ‘pro-
gram_uri’. Defaults to ‘’.

• play_mode (str, optional) – The play mode for the alarm. Can be
one of NORMAL, SHUFFLE_NOREPEAT, SHUFFLE, REPEAT_ALL, REPEAT_ONE,

36 Chapter 1. Contents

https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

SHUFFLE_REPEAT_ONE. Defaults to NORMAL.

• volume (int, optional) – The alarm’s volume (0-100). Defaults to 20.

• include_linked_zones (bool, optional) – True if the alarm should be played
on the other speakers in the same group, False otherwise. Defaults to False.

update(**kwargs)
Update an existing Alarm instance using the same arguments as __init__.

play_mode
The play mode for the alarm.

Can be one of NORMAL, SHUFFLE_NOREPEAT, SHUFFLE, REPEAT_ALL, REPEAT_ONE,
SHUFFLE_REPEAT_ONE.

Type str

volume
The alarm’s volume (0-100).

Type int

recurrence
How often the alarm should be triggered.

Can be DAILY, ONCE, WEEKDAYS, WEEKENDS or of the form ON_DDDDDDD where D is a number from
0-7 representing a day of the week (Sunday is 0), e.g. ON_034meaning Sunday, Wednesday and Thursday.

Type str

save()
Save the alarm to the Sonos system.

Returns The alarm ID, or None if no alarm was saved.

Return type str

Raises SoCoUPnPException – if the alarm cannot be created because there is already an
alarm for this room at the specified time.

remove()
Remove the alarm from the Sonos system.

There is no need to call save. The Python instance is not deleted, and can be saved back to Sonos again
if desired.

Returns If the removal was sucessful.

Return type bool

alarm_id
The ID of the alarm, or None.

Type str

soco.alarms.get_alarms(zone=None)
Get a set of all alarms known to the Sonos system.

Parameters zone (soco.SoCo, optional) – a SoCo instance to query. If None, a random
instance is used. Defaults to None.

Returns A set of Alarm instances

Return type set

1.10. soco package 37

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#set

soco Documentation, Release 0.27.0

soco.alarms.remove_alarm_by_id(zone, alarm_id)
Remove an alarm from the Sonos system by its ID.

Parameters

• zone (SoCo) – A SoCo instance, which can be any zone that belongs to the Sonos system
in which the required alarm is defined.

• alarm_id (str) – The ID of the alarm to be removed.

Returns True if the alarm is found and removed, False otherwise.

Return type bool

soco.alarms.parse_alarm_payload(payload, zone)
Parse the XML payload response and return a dict of Alarm kwargs.

1.10.2.2 soco.cache module

This module contains the classes underlying SoCo’s caching system.

class soco.cache._BaseCache(*args, **kwargs)
An abstract base class for the cache.

enabled = None
whether the cache is enabled

Type bool

put(item, *args, **kwargs)
Put an item into the cache.

get(*args, **kwargs)
Get an item from the cache.

delete(*args, **kwargs)
Delete an item from the cache.

clear()
Empty the whole cache.

class soco.cache.NullCache(*args, **kwargs)
A cache which does nothing.

Useful for debugging.

put(item, *args, **kwargs)
Put an item into the cache.

get(*args, **kwargs)
Get an item from the cache.

delete(*args, **kwargs)
Delete an item from the cache.

clear()
Empty the whole cache.

class soco.cache.TimedCache(default_timeout=0)
A simple thread-safe cache for caching method return values.

The cache key is generated by from the given *args and **kwargs. Items are expired from the cache after a
given period of time.

38 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

soco Documentation, Release 0.27.0

Example

>>> from time import sleep
>>> cache = TimedCache()
>>> cache.put("item", 'some', kw='args', timeout=3)
>>> # Fetch the item again, by providing the same args and kwargs.
>>> assert cache.get('some', kw='args') == "item"
>>> # Providing different args or kwargs will not return the item.
>>> assert not cache.get('some', 'otherargs') == "item"
>>> # Waiting for less than the provided timeout does not cause the
>>> # item to expire.
>>> sleep(2)
>>> assert cache.get('some', kw='args') == "item"
>>> # But waiting for longer does.
>>> sleep(2)
>>> assert not cache.get('some', kw='args') == "item"

Warning: At present, the cache can theoretically grow and grow, since entries are not automatically purged,
though in practice this is unlikely since there are not that many different combinations of arguments in the
places where it is used in SoCo, so not that many different cache entries will be created. If this becomes a
problem, use a thread and timer to purge the cache, or rewrite this to use LRU logic!

Parameters

• default_timeout (int) – The default number of seconds after

• items will be expired. (which) –

default_timeout = None
The default caching expiry interval in seconds.

Type int

get(*args, **kwargs)
Get an item from the cache for this combination of args and kwargs.

Parameters

• *args – any arguments.

• **kwargs – any keyword arguments.

Returns The object which has been found in the cache, or None if no unexpired item is found.
This means that there is no point storing an item in the cache if it is None.

Return type object

put(item, *args, **kwargs)
Put an item into the cache, for this combination of args and kwargs.

Parameters

• *args – any arguments.

• **kwargs – any keyword arguments. If timeout is specified as one of the keyword
arguments, the item will remain available for retrieval for timeout seconds. If timeout
is None or not specified, the default_timeout for this cache will be used. Specify a
timeout of 0 (or ensure that the default_timeout for this cache is 0) if this item is
not to be cached.

1.10. soco package 39

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None

soco Documentation, Release 0.27.0

delete(*args, **kwargs)
Delete an item from the cache for this combination of args and kwargs.

clear()
Empty the whole cache.

static make_key(*args, **kwargs)
Generate a unique, hashable, representation of the args and kwargs.

Parameters

• *args – any arguments.

• **kwargs – any keyword arguments.

Returns the key.

Return type str

class soco.cache.Cache(*args, **kwargs)
A factory class which returns an instance of a cache subclass.

A TimedCache is returned, unless config.CACHE_ENABLED is False, in which case a NullCache
will be returned.

clear()
Empty the whole cache.

delete(*args, **kwargs)
Delete an item from the cache.

get(*args, **kwargs)
Get an item from the cache.

put(item, *args, **kwargs)
Put an item into the cache.

1.10.2.3 soco.config module

This module contains configuration variables.

They may be set by your code as follows:

from soco import config
...
config.VARIABLE = value

soco.config.SOCO_CLASS
alias of soco.core.SoCo

soco.config.CACHE_ENABLED = True
Is the cache enabled?

If True (the default), some caching of network requests will take place.

See also:

The soco.cache module.

soco.config.EVENT_ADVERTISE_IP = None
The IP on which to advertise to Sonos.

The default of None means that the relevant IP address will be detected automatically.

40 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True

soco Documentation, Release 0.27.0

See also:

The soco.events_base module.

soco.config.EVENT_LISTENER_IP = None
The IP on which the event listener listens.

The default of None means that the relevant IP address will be detected automatically.

See also:

The soco.events_base module.

soco.config.EVENT_LISTENER_PORT = 1400
The port on which the event listener listens.

The default is 1400. You must set this before subscribing to any events.

See also:

The soco.events_base module.

soco.config.EVENTS_MODULE = <module 'soco.events' from '/home/docs/checkouts/readthedocs.org/user_builds/soco/checkouts/v0.27.0/soco/events.py'>
The events module to be used by the soco.services module.

The default of None means the soco.events module will be used.

See also:

The soco.events and soco.events_twisted modules.

soco.config.REQUEST_TIMEOUT = 20.0
The timeout (in seconds) to be used when sending commands to a Sonos device.

A value for REQUEST_TIMEOUT must be set. It can be a float, an int, or None. If set to ‘None’, calls can
potentially wait indefinitely. (The default of 20.0s is a long time for network operations, but it’s been determined
empirically to be a reasonable upper limit for most circumstances.)

REQUEST_TIMEOUT can be set dynamically during program execution to adjust the timeout at runtime. It
can also be overridden for specific calls by using the ‘timeout’ kwarg in the relevant calling functions.

1.10.2.4 soco.core module

The core module contains the SoCo class that implements the main entry to the SoCo functionality

soco.core.only_on_master(function)
Decorator that raises SoCoSlaveException on master call on slave.

soco.core.only_on_soundbars(function)
Decorator to raise an exception on soundbar property access on non-soundbars.

class soco.core.SoCo(ip_address)
A simple class for controlling a Sonos speaker.

For any given set of arguments to __init__, only one instance of this class may be created. Subsequent attempts
to create an instance with the same arguments will return the previously created instance. This means that all
SoCo instances created with the same ip address are in fact the same SoCo instance, reflecting the real world
position.

Basic Methods

1.10. soco package 41

soco Documentation, Release 0.27.0

play_from_queue(index[, start]) Play a track from the queue by index.
play() Play the currently selected track.
play_uri([uri, meta, title, start, force_radio]) Play a URI.
pause() Pause the currently playing track.
stop() Stop the currently playing track.
end_direct_control_session() Ends all third-party controlled streaming sessions.
seek([position, track]) Seek to a given position.
next() Go to the next track.
previous() Go back to the previously played track.
mute The speaker’s mute state.
volume The speaker’s volume.
play_mode The queue’s play mode.
shuffle The queue’s shuffle option.
repeat The queue’s repeat option.
cross_fade The speaker’s cross fade state.
ramp_to_volume(volume[, ramp_type]) Smoothly change the volume.
set_relative_volume(relative_volume) Adjust the volume up or down by a relative amount.
get_current_track_info() Get information about the currently playing track.
get_current_media_info() Get information about the currently playing media.
get_speaker_info([refresh, timeout]) Get information about the Sonos speaker.
get_current_transport_info() Get the current playback state.

Queue Management

get_queue([start, max_items,
full_album_art_uri])

Get information about the queue.

queue_size Size of the queue.
add_to_queue(queueable_item[, position,
as_next])

Add a queueable item to the queue.

add_uri_to_queue(uri[, position, as_next]) Add the URI to the queue.
add_multiple_to_queue(items[, container]) Add a sequence of items to the queue.
remove_from_queue(index) Remove a track from the queue by index.
clear_queue() Remove all tracks from the queue.

Group Management

group The Zone Group of which this device is a member.
partymode() Put all the speakers in the network in the same group,

a.k.a Party Mode.
join(master) Join this speaker to another “master” speaker.
unjoin() Remove this speaker from a group.
all_groups All available groups.
all_zones All available zones.
visible_zones All visible zones.

Player Identity and Settings

42 Chapter 1. Contents

soco Documentation, Release 0.27.0

player_name The speaker’s name.
uid A unique identifier.
household_id A unique identifier for all players in a household.
is_visible Is this zone visible?
is_bridge Is this zone a bridge?
is_coordinator Is this zone a group coordinator?
is_soundbar Is this zone a soundbar (i.e.
is_satellite Is this zone a satellite in a home theater setup?
has_satellites Is this zone configured with satellites in a home the-

ater setup?
sub_enabled Reports if the subwoofer is enabled.
sub_gain The current subwoofer gain level.
is_subwoofer Is this zone a subwoofer?
has_subwoofer Is this zone configured with a subwoofer?
channel Location of this zone in a home theater or paired con-

figuration.
bass The speaker’s bass EQ.
treble The speaker’s treble EQ.
loudness The speaker’s loudness compensation.
balance The left/right balance for the speaker(s).
audio_delay The TV Dialog Sync audio delay.
night_mode The speaker’s night mode.
dialog_mode The speaker’s dialog mode.
surround_enabled Reports if the home theater surround speakers are en-

abled.
surround_full_volume_enabled Return True if surround full volume is enabled for

surround music playback.
surround_volume_tv Get the relative volume for surround speakers in TV

playback mode.
surround_volume_music Return the relative volume for surround speakers in

music mode, in the range -15 to +15.
soundbar_audio_input_format Return a string presentation of the audio input for-

mat.
supports_fixed_volume Whether the device supports fixed volume output.
fixed_volume The device’s fixed volume output setting.
soundbar_audio_input_format Return a string presentation of the audio input for-

mat.
soundbar_audio_input_format_code Return audio input format code as reported by the

device.
trueplay Whether Trueplay is enabled on this device.
status_light The white Sonos status light between the mute button

and the volume up button on the speaker.
buttons_enabled Whether the control buttons on the device are en-

abled.
voice_service_configured Is a voice service configured on this device?
mic_enabled Is the device’s microphone enabled?

Playlists and Favorites

1.10. soco package 43

soco Documentation, Release 0.27.0

get_sonos_playlists(*args, **kwargs) Convenience method for call-
ing soco.music_library.
get_music_library_information('sonos_playlists')

create_sonos_playlist(title) Create a new empty Sonos playlist.
create_sonos_playlist_from_queue(title) Create a new Sonos playlist from the current queue.
remove_sonos_playlist(sonos_playlist) Remove a Sonos playlist.
add_item_to_sonos_playlist(queueable_item,
. . .)

Adds a queueable item to a Sonos’ playlist.

reorder_sonos_playlist(sonos_playlist,
. . .)

Reorder and/or Remove tracks in a Sonos playlist.

clear_sonos_playlist(sonos_playlist[, up-
date_id])

Clear all tracks from a Sonos playlist.

move_in_sonos_playlist(sonos_playlist,
. . .)

Move a track to a new position within a Sonos
Playlist.

remove_from_sonos_playlist(sonos_playlist,
track)

Remove a track from a Sonos Playlist.

get_sonos_playlist_by_attr(attr_name,
match)

Return the first Sonos Playlist DidlPlaylistContainer
that matches the attribute specified.

get_favorite_radio_shows([start,
max_items])

Get favorite radio shows from Sonos’ Radio app.

get_favorite_radio_stations([start,
max_items])

Get favorite radio stations from Sonos’ Radio app.

get_sonos_favorites([start, max_items]) Get Sonos favorites.

Miscellaneous

music_source The current music source (radio, TV, line-in, etc.).
music_source_from_uri(uri) Determine a music source from a URI.
is_playing_radio Is the speaker playing radio?
is_playing_tv Is the playbar speaker input from TV?
is_playing_line_in Is the speaker playing line-in?
switch_to_line_in([source]) Switch the speaker’s input to line-in.
switch_to_tv() Switch the playbar speaker’s input to TV.
available_actions The transport actions that are currently available on

the speaker.
set_sleep_timer(sleep_time_seconds) Sets the sleep timer.
get_sleep_timer() Retrieves remaining sleep time, if any
create_stereo_pair(rh_slave_speaker) Create a stereo pair.
separate_stereo_pair() Separate a stereo pair.
get_battery_info([timeout]) Get battery information for a Sonos speaker.
boot_seqnum The boot sequence number.

Warning: Properties on this object are not generally cached and may obtain information over the network,
so may take longer than expected to set or return a value. It may be a good idea for you to cache the value in
your own code.

Note: Since all methods/properties on this object will result in an UPnP request, they might result in an
exception without it being mentioned in the Raises section.

44 Chapter 1. Contents

soco Documentation, Release 0.27.0

In most cases, the exception will be a soco.exceptions.SoCoUPnPException (if the player returns an
UPnP error code), but in special cases it might also be another soco.exceptions.SoCoException or
even a requests exception.

ip_address = None
The speaker’s ip address

boot_seqnum
The boot sequence number.

Type int

player_name
The speaker’s name.

Type str

uid
A unique identifier.

Looks like: 'RINCON_000XXXXXXXXXX1400'

Type str

household_id
A unique identifier for all players in a household.

Looks like: 'Sonos_asahHKgjgJGjgjGjggjJgjJG34'

Type str

is_visible
Is this zone visible?

A zone might be invisible if, for example, it is a bridge, or the slave part of stereo pair.

Type bool

is_bridge
Is this zone a bridge?

Type bool

is_coordinator
Is this zone a group coordinator?

Type bool

is_satellite
Is this zone a satellite in a home theater setup?

Type bool

has_satellites
Is this zone configured with satellites in a home theater setup?

Will only return True on the primary device in a home theater configuration.

Type bool

is_subwoofer
Is this zone a subwoofer?

Type bool

1.10. soco package 45

https://docs.python-requests.org/en/master/api/#module-requests
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

soco Documentation, Release 0.27.0

has_subwoofer
Is this zone configured with a subwoofer?

Only provides reliable results when called on the soundbar or subwoofer devices if configured in a home
theater setup.

Type bool

channel
Location of this zone in a home theater or paired configuration.

Can be one of “LF,RF”, “LF”, “RF”, “LR”, “RR”, “SW”, or None.

Type str

is_soundbar
Is this zone a soundbar (i.e. has night mode etc.)?

Type bool

play_mode
The queue’s play mode.

Case-insensitive options are:

• 'NORMAL' – Turns off shuffle and repeat.

• 'REPEAT_ALL' – Turns on repeat and turns off shuffle.

• 'SHUFFLE' – Turns on shuffle and repeat. (It’s strange, I know.)

• 'SHUFFLE_NOREPEAT' – Turns on shuffle and turns off repeat.

• 'REPEAT_ONE' – Turns on repeat one and turns off shuffle.

• 'SHUFFLE_REPEAT_ONE' – Turns on shuffle and repeat one. (It’s strange, I know.)

Type str

shuffle
The queue’s shuffle option.

True if enabled, False otherwise.

Type bool

repeat
The queue’s repeat option.

True if enabled, False otherwise.

Can also be the string 'ONE' for play mode 'REPEAT_ONE'.

Type bool

cross_fade
The speaker’s cross fade state.

True if enabled, False otherwise

Type bool

ramp_to_volume(volume, ramp_type=’SLEEP_TIMER_RAMP_TYPE’)
Smoothly change the volume.

There are three ramp types available:

46 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

soco Documentation, Release 0.27.0

• 'SLEEP_TIMER_RAMP_TYPE' (default): Linear ramp from the current volume up or down to the
new volume. The ramp rate is 1.25 steps per second. For example: To change from volume 50 to
volume 30 would take 16 seconds.

• 'ALARM_RAMP_TYPE': Resets the volume to zero, waits for about 30 seconds, and then ramps the
volume up to the desired value at a rate of 2.5 steps per second. For example: Volume 30 would take
12 seconds for the ramp up (not considering the wait time).

• 'AUTOPLAY_RAMP_TYPE': Resets the volume to zero and then quickly ramps up at a rate of 50
steps per second. For example: Volume 30 will take only 0.6 seconds.

The ramp rate is selected by Sonos based on the chosen ramp type and the resulting transition time returned.
This method is non blocking and has no network overhead once sent.

Parameters

• volume (int) – The new volume.

• ramp_type (str, optional) – The desired ramp type, as described above.

Returns The ramp time in seconds, rounded down. Note that this does not include the wait time.

Return type int

set_relative_volume(relative_volume)
Adjust the volume up or down by a relative amount.

If the adjustment causes the volume to overshoot the maximum value of 100, the volume will be set to 100.
If the adjustment causes the volume to undershoot the minimum value of 0, the volume will be set to 0.

Note that this method is an alternative to using addition and subtraction assignment operators (+=,
-=) on the volume property of a SoCo instance. These operators perform the same function as
set_relative_volume but require two network calls per operation instead of one.

Parameters relative_volume (int) – The relative volume adjustment. Can be positive or
negative.

Returns The new volume setting.

Return type int

Raises ValueError – If relative_volume cannot be cast as an integer.

play_from_queue(index, start=True)
Play a track from the queue by index.

The index number is required as an argument, where the first index is 0.

Parameters

• index (int) – 0-based index of the track to play

• start (bool) – If the item that has been set should start playing

play()
Play the currently selected track.

play_uri(uri=”, meta=”, title=”, start=True, force_radio=False)
Play a URI.

Playing a URI will replace what was playing with the stream given by the URI. For some streams at least
a title is required as metadata. This can be provided using the meta argument or the title argument. If
the title argument is provided minimal metadata will be generated. If meta argument is provided the
title argument is ignored.

Parameters

1.10. soco package 47

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

soco Documentation, Release 0.27.0

• uri (str) – URI of the stream to be played.

• meta (str) – The metadata to show in the player, DIDL format.

• title (str) – The title to show in the player (if no meta).

• start (bool) – If the URI that has been set should start playing.

• force_radio (bool) – forces a uri to play as a radio stream.

On a Sonos controller music is shown with one of the following display formats and controls:

• Radio format: Shows the name of the radio station and other available data. No seek, next, previous,
or voting capability. Examples: TuneIn, radioPup

• Smart Radio: Shows track name, artist, and album. Limited seek, next and sometimes voting capabil-
ity depending on the Music Service. Examples: Amazon Prime Stations, Pandora Radio Stations.

• Track format: Shows track name, artist, and album the same as when playing from a queue. Full seek,
next and previous capabilities. Examples: Spotify, Napster, Rhapsody.

How it is displayed is determined by the URI prefix: x-sonosapi-stream:,
x-sonosapi-radio:, x-rincon-mp3radio:, hls-radio: default to radio or smart ra-
dio format depending on the stream. Others default to track format: x-file-cifs:, aac:, http:,
https:, x-sonos-spotify: (used by Spotify), x-sonosapi-hls-static: (Amazon Prime),
x-sonos-http: (Google Play & Napster).

Some URIs that default to track format could be radio streams, typically http:, https: or aac:. To
force display and controls to Radio format set force_radio=True

Note: Other URI prefixes exist but are less common. If you have information on these please add to this
doc string.

Note: A change in Sonos® (as of at least version 6.4.2) means that the devices no longer accepts ordinary
http: and https: URIs for radio stations. This method has the option to replaces these prefixes with
the one that Sonos® expects: x-rincon-mp3radio: by using the “force_radio=True” parameter. A
few streams may fail if not forced to to Radio format.

pause()
Pause the currently playing track.

stop()
Stop the currently playing track.

end_direct_control_session()
Ends all third-party controlled streaming sessions.

seek(position=None, track=None)
Seek to a given position.

You can seek both a relative position in the current track and a track number in the queue. It is even
possible to seek to a tuple or dict containing the absolute position (relative pos. and track nr.):

t = ('0:00:00', 0)
player.seek(*t)
d = {'position': '0:00:00', 'track': 0}
player.seek(**d)

48 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

soco Documentation, Release 0.27.0

Parameters

• position (str) – The desired timestamp in the current track, specified in the format of
HH:MM:SS or H:MM:SS

• track (int) – The (zero-based) track index in the queue

Raises

• ValueError – If neither position nor track are specified.

• SoCoUPnPException – UPnP Error 701 if seeking is not supported, UPnP Error 711
if the target is invalid.

Note: The ‘track’ parameter can only be used if the queue is currently playing. If not, use
play_from_queue().

This is currently faster than play_from_queue() if already using the queue, as it does not reinstate
the queue.

If speaker is already playing it will continue to play after seek. If paused it will remain paused.

next()
Go to the next track.

Keep in mind that next() can return errors for a variety of reasons. For example, if the Sonos is streaming
Pandora and you call next() several times in quick succession an error code will likely be returned (since
Pandora has limits on how many songs can be skipped).

previous()
Go back to the previously played track.

Keep in mind that previous() can return errors for a variety of reasons. For example, previous() will return
an error code (error code 701) if the Sonos is streaming Pandora since you can’t go back on tracks.

mute
The speaker’s mute state.

True if muted, False otherwise.

Type bool

volume
The speaker’s volume.

An integer between 0 and 100.

Type int

bass
The speaker’s bass EQ.

An integer between -10 and 10.

Type int

treble
The speaker’s treble EQ.

An integer between -10 and 10.

Type int

1.10. soco package 49

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

soco Documentation, Release 0.27.0

loudness
The speaker’s loudness compensation.

True if on, False otherwise.

Loudness is a complicated topic. You can read about it on Wikipedia: https://en.wikipedia.org/wiki/
Loudness

Type bool

surround_enabled
Reports if the home theater surround speakers are enabled.

Should only be called on the primary device in a home theater setup.

True if on, False if off, None if not supported.

Type bool

sub_enabled
Reports if the subwoofer is enabled.

True if on, False if off, None if not supported.

Type bool

sub_gain
The current subwoofer gain level.

Returns the current value or None if not supported.

Type int

balance
The left/right balance for the speaker(s).

Returns A 2-tuple (left_channel, right_channel) of integers between 0 and 100, representing the
volume of each channel. E.g., (100, 100) represents full volume to both channels, whereas
(100, 0) represents left channel at full volume, right channel at zero volume.

Return type tuple

audio_delay
The TV Dialog Sync audio delay.

Returns the current value or None if not supported.

Type int

night_mode
The speaker’s night mode.

True if on, False if off, None if not supported.

Type bool

dialog_mode
The speaker’s dialog mode.

True if on, False if off, None if not supported.

Type bool

surround_full_volume_enabled
Return True if surround full volume is enabled for surround music playback.

If False, playback on surround speakers uses ambient volume.

50 Chapter 1. Contents

https://en.wikipedia.org/wiki/Loudness
https://en.wikipedia.org/wiki/Loudness
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

soco Documentation, Release 0.27.0

Note: does not apply to TV playback.

surround_volume_tv
Get the relative volume for surround speakers in TV playback mode. Ranges from -15 to +15.

surround_volume_music
Return the relative volume for surround speakers in music mode, in the range -15 to +15.

dialog_level
Convenience wrapper for dialog_mode getter to match raw Sonos API.

trueplay
Whether Trueplay is enabled on this device. True if on, False if off.

Devices that do not support Trueplay, or which do not have a current Trueplay calibration, will return
None on getting the property, and raise a NotSupportedException when setting the property.

Can only be set on visible devices. Attempting to set on non-visible devices will raise a
SoCoNotVisibleException.

Type bool

soundbar_audio_input_format_code
Return audio input format code as reported by the device.

Returns None when the device is not a soundbar.

While the variable is available on non-soundbar devices, it is likely always 0 for devices without audio
inputs.

See also soundbar_audio_input_format() for obtaining a human-readable description of the
format.

soundbar_audio_input_format
Return a string presentation of the audio input format.

Returns None when the device is not a soundbar. Otherwise, this will return the string presentation of the
currently active sound format (e.g., “Dolby 5.1” or “No input”)

See also soundbar_audio_input_format_code() for the raw value.

supports_fixed_volume
Whether the device supports fixed volume output.

Type bool

fixed_volume
The device’s fixed volume output setting.

True if on, False if off. Only applicable to certain Sonos devices (Connect and Port at the time of writing).
All other devices always return False.

Attempting to set this property for a non-applicable device will raise a NotSupportedException.

Type bool

all_groups
All available groups.

Type set of soco.groups.ZoneGroup

group
The Zone Group of which this device is a member.

None if this zone is a slave in a stereo pair.

1.10. soco package 51

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

soco Documentation, Release 0.27.0

Type soco.groups.ZoneGroup

all_zones
All available zones.

Type set of soco.groups.ZoneGroup

visible_zones
All visible zones.

Type set of soco.groups.ZoneGroup

clear_zone_groups()
Clear all known group sets for this zone.

partymode()
Put all the speakers in the network in the same group, a.k.a Party Mode.

This blog shows the initial research responsible for this: http://blog.travelmarx.com/2010/06/
exploring-sonos-via-upnp.html

The trick seems to be (only tested on a two-speaker setup) to tell each speaker which to join. There’s
probably a bit more to it if multiple groups have been defined.

join(master)
Join this speaker to another “master” speaker.

unjoin()
Remove this speaker from a group.

Seems to work ok even if you remove what was previously the group master from it’s own group. If the
speaker was not in a group also returns ok.

create_stereo_pair(rh_slave_speaker)
Create a stereo pair.

This speaker becomes the master, left-hand speaker of the stereo pair. The rh_slave_speaker be-
comes the right-hand speaker. Note that this operation will succeed on dissimilar speakers, unlike when
using the official Sonos apps.

Parameters rh_slave_speaker (SoCo) – The speaker that will be added as the right-hand,
slave speaker of the stereo pair.

Raises SoCoUPnPException – if either speaker is already part of a stereo pair.

separate_stereo_pair()
Separate a stereo pair.

This can be called on either the master (left-hand) speaker, or on the slave (right-hand) speaker, to create
two independent zones.

Raises SoCoUPnPException – if the speaker is not a member of a stereo pair.

switch_to_line_in(source=None)
Switch the speaker’s input to line-in.

Parameters source (SoCo) – The speaker whose line-in should be played. Default is line-in
from the speaker itself.

is_playing_radio
Is the speaker playing radio?

Type bool

52 Chapter 1. Contents

http://blog.travelmarx.com/2010/06/exploring-sonos-via-upnp.html
http://blog.travelmarx.com/2010/06/exploring-sonos-via-upnp.html
https://docs.python.org/3/library/functions.html#bool

soco Documentation, Release 0.27.0

is_playing_line_in
Is the speaker playing line-in?

Type bool

is_playing_tv
Is the playbar speaker input from TV?

Type bool

static music_source_from_uri(uri)
Determine a music source from a URI.

Parameters uri (str) – The URI representing the music source

Returns The current source of music.

Return type str

Possible return values are:

• 'NONE' – speaker has no music to play.

• 'LIBRARY' – speaker is playing queued titles from the music library.

• 'RADIO' – speaker is playing radio.

• 'WEB_FILE' – speaker is playing a music file via http/https.

• 'LINE_IN' – speaker is playing music from line-in.

• 'TV' – speaker is playing input from TV.

• 'AIRPLAY' – speaker is playing from AirPlay.

• 'UNKNOWN' – any other input.

The strings above can be imported as MUSIC_SRC_LIBRARY, MUSIC_SRC_RADIO, etc.

music_source
The current music source (radio, TV, line-in, etc.).

Possible return values are the same as used in music_source_from_uri().

Type str

switch_to_tv()
Switch the playbar speaker’s input to TV.

status_light
The white Sonos status light between the mute button and the volume up button on the speaker.

True if on, otherwise False.

Type bool

buttons_enabled
Whether the control buttons on the device are enabled.

True if the control buttons are enabled, False if disabled.

This property can only be set on visible speakers, and will enable or disable the buttons for all speakers in
any bonded set (e.g., a stereo pair). Attempting to set it on invisible speakers (e.g., the RH speaker of a
stereo pair) will raise a SoCoNotVisibleException.

Type bool

1.10. soco package 53

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

soco Documentation, Release 0.27.0

voice_service_configured
Is a voice service configured on this device?

Type bool

mic_enabled
Is the device’s microphone enabled?

Note: Returns None if the device does not have a microphone or if a voice service is not configured.

Type bool

get_current_track_info()
Get information about the currently playing track.

Returns A dictionary containing information about the currently playing track:
playlist_position, duration, title, artist, album, position and an album_art link.

Return type dict

If we’re unable to return data for a field, we’ll return an empty string. This can happen for all kinds of
reasons so be sure to check values. For example, a track may not have complete metadata and be missing
an album name. In this case track[‘album’] will be an empty string.

Note: Calling this method on a slave in a group will not return the track the group is playing, but the last
track this speaker was playing.

get_current_media_info()
Get information about the currently playing media.

Returns A dictionary containing information about the currently playing media: uri, channel.

Return type dict

If we’re unable to return data for a field, we’ll return an empty string.

get_speaker_info(refresh=False, timeout=None)
Get information about the Sonos speaker.

Parameters

• refresh (bool) – Refresh the speaker info cache.

• timeout – How long to wait for the server to send data before giving up, as a float, or a
(connect timeout, read timeout) tuple e.g. (3, 5). Default is no timeout.

Returns Information about the Sonos speaker, such as the UID, MAC Address, and Zone Name.

Return type dict

get_current_transport_info()
Get the current playback state.

Returns

The following information about the speaker’s playing state:

• current_transport_state (PLAYING, TRANSITIONING, PAUSED_PLAYBACK,
STOPPED)

• current_transport_status (OK, ?)

54 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

soco Documentation, Release 0.27.0

• current_speed(1, ?)

Return type dict

This allows us to know if speaker is playing or not. Don’t know other states of CurrentTransportStatus and
CurrentSpeed.

available_actions
The transport actions that are currently available on the speaker.

Returns list: A list of strings representing the available actions, such as [‘Set’, ‘Stop’, ‘Play’].

Possible list items are: ‘Set’, ‘Stop’, ‘Pause’, ‘Play’, ‘Next’, ‘Previous’, ‘SeekTime’, ‘SeekTrackNr’.

get_queue(start=0, max_items=100, full_album_art_uri=False)
Get information about the queue.

Parameters

• start – Starting number of returned matches

• max_items – Maximum number of returned matches

• full_album_art_uri – If the album art URI should include the IP address

Returns A Queue object

This method is heavily based on Sam Soffes (aka soffes) ruby implementation

queue_size
Size of the queue.

Type int

get_sonos_playlists(*args, **kwargs)
Convenience method for calling soco.music_library.get_music_library_information('sonos_playlists')

Refer to the docstring for that method: get_music_library_information

add_uri_to_queue(uri, position=0, as_next=False)
Add the URI to the queue.

For arguments and return value see add_to_queue.

add_to_queue(queueable_item, position=0, as_next=False)
Add a queueable item to the queue.

Parameters

• queueable_item (DidlObject or MusicServiceItem) – The item to be
added to the queue

• position (int) – The index (1-based) at which the URI should be added. Default is 0
(add URI at the end of the queue).

• as_next (bool) – Whether this URI should be played as the next track in shuffle mode.
This only works if play_mode=SHUFFLE.

Returns The index of the new item in the queue.

Return type int

add_multiple_to_queue(items, container=None)
Add a sequence of items to the queue.

Parameters

• items (list) – A sequence of items to the be added to the queue

1.10. soco package 55

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

soco Documentation, Release 0.27.0

• container (DidlObject, optional) – A container object which includes the
items.

remove_from_queue(index)
Remove a track from the queue by index. The index number is required as an argument, where the first
index is 0.

Parameters index (int) – The (0-based) index of the track to remove

clear_queue()
Remove all tracks from the queue.

get_favorite_radio_shows(start=0, max_items=100)
Get favorite radio shows from Sonos’ Radio app.

Returns: dict: A dictionary containing the total number of favorites, the number of favorites re-
turned, and the actual list of favorite radio shows, represented as a dictionary with 'title'
and 'uri' keys.

Depending on what you’re building, you’ll want to check to see if the total number of favorites
is greater than the amount you requested (max_items), if it is, use start to page through and
get the entire list of favorites.

Deprecated since version 0.13: Will be removed in version 0.15. Use soco.music_library.
get_favorite_radio_shows instead.

get_favorite_radio_stations(start=0, max_items=100)
Get favorite radio stations from Sonos’ Radio app.

See get_favorite_radio_shows() for return type and remarks.

Deprecated since version 0.13: Will be removed in version 0.15. Use soco.music_library.
get_favorite_radio_stations instead.

get_sonos_favorites(start=0, max_items=100)
Get Sonos favorites.

See get_favorite_radio_shows() for return type and remarks.

Deprecated since version 0.13: Will be removed in version 0.15. Use soco.music_library.
get_sonos_favorites instead.

create_sonos_playlist(title)
Create a new empty Sonos playlist.

Parameters title – Name of the playlist

Return type DidlPlaylistContainer

create_sonos_playlist_from_queue(title)
Create a new Sonos playlist from the current queue.

Parameters title – Name of the playlist

Return type DidlPlaylistContainer

remove_sonos_playlist(sonos_playlist)
Remove a Sonos playlist.

Parameters sonos_playlist (DidlPlaylistContainer) – Sonos playlist to remove
or the item_id (str).

Returns True if succesful, False otherwise

Return type bool

56 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

soco Documentation, Release 0.27.0

Raises SoCoUPnPException – If sonos_playlist does not point to a valid object.

add_item_to_sonos_playlist(queueable_item, sonos_playlist)
Adds a queueable item to a Sonos’ playlist.

Parameters

• queueable_item (DidlObject) – the item to add to the Sonos’ playlist

• sonos_playlist (DidlPlaylistContainer) – the Sonos’ playlist to which the
item should be added

set_sleep_timer(sleep_time_seconds)
Sets the sleep timer.

Parameters sleep_time_seconds (int or NoneType) – How long to wait before
turning off speaker in seconds, None to cancel a sleep timer. Maximum value of 86399

Raises

• SoCoException – Upon errors interacting with Sonos controller

• ValueError – Argument/Syntax errors

get_sleep_timer()
Retrieves remaining sleep time, if any

Returns

Number of seconds left in timer. If there is no sleep timer currently set it will return
None.

Return type int or NoneType

reorder_sonos_playlist(sonos_playlist, tracks, new_pos, update_id=0)
Reorder and/or Remove tracks in a Sonos playlist.

The underlying call is quite complex as it can both move a track within the list or delete a track from the
playlist. All of this depends on what tracks and new_pos specify.

If a list is specified for tracks, then a list must be used for new_pos. Each list element is a discrete
modification and the next list operation must anticipate the new state of the playlist.

If a comma formatted string to tracks is specified, then use a similiar string to specify new_pos. Those
operations should be ordered from the end of the list to the beginning

See the helper methods clear_sonos_playlist(), move_in_sonos_playlist(),
remove_from_sonos_playlist() for simplified usage.

update_id - If you have a series of operations, tracking the update_id and setting it, will save a lookup
operation.

Examples

To reorder the first two tracks:

sonos_playlist specified by the DidlPlaylistContainer object
sonos_playlist = device.get_sonos_playlists()[0]
device.reorder_sonos_playlist(sonos_playlist,

tracks=[0,], new_pos=[1,])
OR specified by the item_id
device.reorder_sonos_playlist('SQ:0', tracks=[0,], new_pos=[1,])

1.10. soco package 57

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int

soco Documentation, Release 0.27.0

To delete the second track:

tracks/new_pos are a list of int
device.reorder_sonos_playlist(sonos_playlist,

tracks=[1,], new_pos=[None,])
OR tracks/new_pos are a list of int-like
device.reorder_sonos_playlist(sonos_playlist,

tracks=['1',], new_pos=['',])
OR tracks/new_pos are strings - no transform is done
device.reorder_sonos_playlist(sonos_playlist, tracks='1',

new_pos='')

To reverse the order of a playlist with 4 items:

device.reorder_sonos_playlist(sonos_playlist, tracks='3,2,1,0',
new_pos='0,1,2,3')

Parameters

• sonos_playlist – (DidlPlaylistContainer): The Sonos playlist object or the
item_id (str) of the Sonos playlist.

• tracks – (list): list of track indices(int) to reorder. May also be a list of int like things.
i.e. ['0', '1',] OR it may be a str of comma separated int like things. "0,1".
Tracks are 0-based. Meaning the first track is track 0, just like indexing into a Python list.

• new_pos (list) – list of new positions (int|None) corresponding to track_list. MUST
be the same type as tracks. 0-based, see tracks above. None is the indicator to remove
the track. If using a list of strings, then a remove is indicated by an empty string.

• update_id (int) – operation id (default: 0) If set to 0, a lookup is done to find the
correct value.

Returns Which contains 3 elements: change, length and update_id. Change in size between
original playlist and the resulting playlist, the length of resulting playlist, and the new up-
date_id.

Return type dict

Raises SoCoUPnPException – If playlist does not exist or if your tracks and/or new_pos
arguments are invalid.

clear_sonos_playlist(sonos_playlist, update_id=0)
Clear all tracks from a Sonos playlist. This is a convenience method for
reorder_sonos_playlist().

Example:

device.clear_sonos_playlist(sonos_playlist)

Parameters

• sonos_playlist – (DidlPlaylistContainer): Sonos playlist object or the
item_id (str) of the Sonos playlist.

• update_id (int) – Optional update counter for the object. If left at the default of 0, it
will be looked up.

Returns See reorder_sonos_playlist()

Return type dict

58 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

soco Documentation, Release 0.27.0

Raises

• ValueError – If sonos_playlist specified by string and is not found.

• SoCoUPnPException – See reorder_sonos_playlist()

move_in_sonos_playlist(sonos_playlist, track, new_pos, update_id=0)
Move a track to a new position within a Sonos Playlist. This is a convenience method for
reorder_sonos_playlist().

Example:

device.move_in_sonos_playlist(sonos_playlist, track=0, new_pos=1)

Parameters

• sonos_playlist – (DidlPlaylistContainer): Sonos playlist object or the
item_id (str) of the Sonos playlist.

• track (int) – 0-based position of the track to move. The first track is track 0, just like
indexing into a Python list.

• new_pos (int) – 0-based location to move the track.

• update_id (int) – Optional update counter for the object. If left at the default of 0, it
will be looked up.

Returns See reorder_sonos_playlist()

Return type dict

Raises SoCoUPnPException – See reorder_sonos_playlist()

remove_from_sonos_playlist(sonos_playlist, track, update_id=0)
Remove a track from a Sonos Playlist. This is a convenience method for
reorder_sonos_playlist().

Example:

device.remove_from_sonos_playlist(sonos_playlist, track=0)

Parameters

• sonos_playlist – (DidlPlaylistContainer): Sonos playlist object or the
item_id (str) of the Sonos playlist.

• track (int) – 0*-based position of the track to move. The first track is track 0, just like
indexing into a Python list.

• update_id (int) – Optional update counter for the object. If left at the default of 0, it
will be looked up.

Returns See reorder_sonos_playlist()

Return type dict

Raises SoCoUPnPException – See reorder_sonos_playlist()

get_sonos_playlist_by_attr(attr_name, match)
Return the first Sonos Playlist DidlPlaylistContainer that matches the attribute specified.

Parameters

1.10. soco package 59

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

soco Documentation, Release 0.27.0

• attr_name (str) – DidlPlaylistContainer attribute to compare. The most useful being:
‘title’ and ‘item_id’.

• match (str) – Value to match.

Returns

The first matching playlist object.

Return type (DidlPlaylistContainer)

Raises

• (AttributeError) – If indicated attribute name does not exist.

• (ValueError) – If a match can not be found.

Example:

device.get_sonos_playlist_by_attr('title', 'Foo')
device.get_sonos_playlist_by_attr('item_id', 'SQ:3')

get_battery_info(timeout=3.0)
Get battery information for a Sonos speaker.

Obtains battery information for Sonos speakers that report it. This only applies to Sonos Move speakers at
the time of writing.

This method may only work on Sonos ‘S2’ systems.

Parameters timeout (float, optional) – The timeout to use when making the HTTP
request.

Returns

A dict containing battery status data.

Example return value:

{'Health': 'GREEN',
'Level': 100,
'Temperature': 'NORMAL',
'PowerSource': 'SONOS_CHARGING_RING'}

Return type dict

Raises

• NotSupportedException – If the speaker does not report battery information.

• ConnectionError – If the HTTP connection failed, or returned an unsuccessful status
code.

• TimeoutError – If making the HTTP connection, or reading the response, timed out.

1.10.2.5 soco.data_structures module

This module contains classes for handling DIDL-Lite metadata.

DIDL is the Digital Item Declaration Language , an XML schema which is part of MPEG21. DIDL-Lite is a cut-down
version of the schema which is part of the UPnP ContentDirectory specification. It is the XML schema used by Sonos
for carrying metadata representing many items such as tracks, playlists, composers, albums etc. Although Sonos uses
ContentDirectory v1, the document for v2 [pdf] is more helpful.

60 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ConnectionError
https://docs.python.org/3/library/exceptions.html#TimeoutError
http://xml.coverpages.org/mpeg21-didl.html
http://www.upnp.org/schemas/av/didl-lite-v2.xsd
_http://upnp.org/specs/av/UPnP-av-ContentDirectory-v2-Service

soco Documentation, Release 0.27.0

soco.data_structures.to_didl_string(*args)
Convert any number of DidlObjects to a unicode xml string.

Parameters *args (DidlObject) – One or more DidlObject (or subclass) instances.

Returns A unicode string representation of DIDL-Lite XML in the form '<DIDL-Lite ...>.
..</DIDL-Lite>'.

Return type str

soco.data_structures.didl_class_to_soco_class(didl_class)
Translate a DIDL-Lite class to the corresponding SoCo data structures class

soco.data_structures.form_name(didl_class)
Return an improvised name for vendor extended classes

class soco.data_structures.DidlResource(uri, protocol_info, import_uri=None,
size=None, duration=None, bitrate=None,
sample_frequency=None, bits_per_sample=None,
nr_audio_channels=None, resolution=None,
color_depth=None, protection=None)

Identifies a resource, typically some type of a binary asset, such as a song.

It is represented in XML by a <res> element, which contains a uri that identifies the resource.

Parameters

• uri (str) – value of the <res> tag, typically a URI. It must be properly escaped (percent
encoded) as described in RFC 3986

• protocol_info (str) – a string in the form a:b:c:d that identifies the streaming or
transport protocol for transmitting the resource. A value is required. For more information
see section 2.5.2 of the UPnP specification [pdf]

• import_uri (str, optional) – uri locator for resource update.

• size (int, optional) – size in bytes.

• duration (str, optional) – duration of the playback of the res at normal speed
(H*:MM:SS:F* or H*:MM:SS:F0/F1)

• bitrate (int, optional) – bitrate in bytes/second.

• sample_frequency (int, optional) – sample frequency in Hz.

• bits_per_sample (int, optional) – bits per sample.

• nr_audio_channels (int, optional) – number of audio channels.

• resolution (str, optional) – resolution of the resource (X*Y).

• color_depth (int, optional) – color depth in bits.

• protection (str, optional) – statement of protection type.

Note: Not all of the parameters are used by Sonos. In general, only uri, protocol_info and duration
seem to be important.

uri = None
a percent encoded URI

Type (str)

1.10. soco package 61

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc3986.html
https://docs.python.org/3/library/stdtypes.html#str
http://upnp.org/specs/av/UPnP-av-ConnectionManager-v1-Service.pdf
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

protocol_info = None
protocol information.

Type (str)

duration = None
playback duration

Type str

classmethod from_element(element)
Set the resource properties from a <res> element.

Parameters element (Element) – The <res> element

to_element()
Return an ElementTree Element based on this resource.

Returns an Element.

Return type Element

to_dict(remove_nones=False)
Return a dict representation of the DidlResource.

Parameters remove_nones (bool, optional) – Optionally remove dictionary elements
when their value is None.

Returns a dict representing the DidlResource

Return type dict

classmethod from_dict(content)
Create an instance from a dict.

An alternative constructor. Equivalent to DidlResource(**content).

Parameters content (dict) – a dict containing metadata information. Required. Valid keys
are the same as the parameters for DidlResource.

class soco.data_structures.DidlMetaClass
Meta class for all Didl objects.

Create a new instance.

Parameters

• name (str) – Name of the class.

• bases (tuple) – Base classes.

• attrs (dict) – attributes defined for the class.

class soco.data_structures.DidlObject(title, parent_id, item_id, restricted=True, re-
sources=None, desc=’RINCON_AssociatedZPUDN’,
**kwargs)

Abstract base class for all DIDL-Lite items.

You should not need to instantiate this. Its XML representation looks like this:

<DIDL-Lite xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:r="urn:schemas-rinconnetworks-com:metadata-1-0/"
xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/">
<item id="...self.item_id..." parentID="...cls.parent_id..."

(continues on next page)

62 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element
https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

soco Documentation, Release 0.27.0

(continued from previous page)

restricted="true">
<dc:title>...self.title...</dc:title>
<upnp:class>...self.item_class...</upnp:class>
<desc id="cdudn"
nameSpace="urn:schemas-rinconnetworks-com:metadata-1-0/">
RINCON_AssociatedZPUDN

</desc>
</item>

</DIDL-Lite>

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object'
str - the DIDL Lite class for this object.

tag = 'item'
str - the XML element tag name used for this instance.

_translation = {'creator': ('dc', 'creator'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

classmethod from_element(element)
Create an instance of this class from an ElementTree xml Element.

An alternative constructor. The element must be a DIDL-Lite <item> or <container> element, and must
be properly namespaced.

Parameters xml (Element) – An Element object.

classmethod from_dict(content)
Create an instance from a dict.

An alternative constructor. Equivalent to DidlObject(**content).

Parameters content (dict) – a dict containing metadata information. Required. Valid keys
are the same as the parameters for DidlObject.

to_dict(remove_nones=False)
Return the dict representation of the instance.

Parameters remove_nones – Optionally remove dictionary elements when their value is
None.

1.10. soco package 63

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element
https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

soco Documentation, Release 0.27.0

to_element(include_namespaces=False)
Return an ElementTree Element representing this instance.

Parameters include_namespaces (bool, optional) – If True, include xml names-
pace attributes on the root element

Returns an Element.

Return type Element

get_uri(resource_nr=0)
Return the uri to use for playing this item.

Parameters resource_nr (int) – The index of the resource. Note that there is no known
object with more than one resource, so you can probably keep the default value (0).

Returns The uri.

Return type str

set_uri(uri, resource_nr=0, protocol_info=None)
Set a resource uri for this instance. If no resource exists, create a new one with the given protocol info.

Parameters

• uri (str) – The resource uri.

• resource_nr (int) – The index of the resource on which to set the uri. If it does not
exist, a new resource is added to the list. Note that by default, only the uri of the first
resource is used for playing the item.

• protocol_info (str) – Protocol info for the resource. If none is given and
the resource does not exist yet, a default protocol info is constructed as '[uri
prefix]:*:*:*'.

class soco.data_structures.DidlItem(title, parent_id, item_id, restricted=True, re-
sources=None, desc=’RINCON_AssociatedZPUDN’,
**kwargs)

A basic content directory item.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.item'
str - the DIDL Lite class for this object.

tag = 'item'
str - the XML element tag name used for this instance.

64 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

_translation = {'album_art_uri': ('upnp', 'albumArtURI'), 'creator': ('dc', 'creator'), 'radio_show': ('r', 'radioShowMd'), 'stream_content': ('r', 'streamContent'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlAudioItem(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=’RINCON_AssociatedZPUDN’, **kwargs)

An audio item.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.item.audioItem'
str - the DIDL Lite class for this object.

tag = 'item'
str - the XML element tag name used for this instance.

_translation = {'album_art_uri': ('upnp', 'albumArtURI'), 'creator': ('dc', 'creator'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'publisher': ('dc', 'publisher'), 'radio_show': ('r', 'radioShowMd'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'stream_content': ('r', 'streamContent'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlMusicTrack(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=’RINCON_AssociatedZPUDN’,
**kwargs)

Class that represents a music library track.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

1.10. soco package 65

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

item_class = 'object.item.audioItem.musicTrack'
str - the DIDL Lite class for this object.

tag = 'item'
str - the XML element tag name used for this instance.

_translation = {'album': ('upnp', 'album'), 'album_art_uri': ('upnp', 'albumArtURI'), 'artist': ('upnp', 'artist'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'original_track_number': ('upnp', 'originalTrackNumber'), 'playlist': ('upnp', 'playlist'), 'publisher': ('dc', 'publisher'), 'radio_show': ('r', 'radioShowMd'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'stream_content': ('r', 'streamContent'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlAudioBook(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=’RINCON_AssociatedZPUDN’, **kwargs)

Class that represents an audio book.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.item.audioItem.audioBook'
str - the DIDL Lite class for this object.

tag = 'item'
str - the XML element tag name used for this instance.

_translation = {'album_art_uri': ('upnp', 'albumArtURI'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'producer': ('upnp', 'producer'), 'publisher': ('dc', 'publisher'), 'radio_show': ('r', 'radioShowMd'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'storageMedium': ('upnp', 'storageMedium'), 'stream_content': ('r', 'streamContent'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlAudioBroadcast(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=’RINCON_AssociatedZPUDN’,
**kwargs)

Class that represents an audio broadcast.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

66 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list

soco Documentation, Release 0.27.0

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.item.audioItem.audioBroadcast'
str - the DIDL Lite class for this object.

tag = 'item'
str - the XML element tag name used for this instance.

_translation = {'album_art_uri': ('upnp', 'albumArtURI'), 'channel_nr': ('upnp', 'channelNr'), 'creator': ('dc', 'creator'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'publisher': ('dc', 'publisher'), 'radio_call_sign': ('upnp', 'radioCallSign'), 'radio_show': ('r', 'radioShowMd'), 'radio_station_id': ('upnp', 'radioStationID'), 'region': ('upnp', 'region'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'stream_content': ('r', 'streamContent'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlRecentShow(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=’RINCON_AssociatedZPUDN’,
**kwargs)

Class that represents a recent radio show/podcast.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.item.audioItem.musicTrack.recentShow'
str - the DIDL Lite class for this object.

tag = 'item'
str - the XML element tag name used for this instance.

_translation = {'album': ('upnp', 'album'), 'album_art_uri': ('upnp', 'albumArtURI'), 'artist': ('upnp', 'artist'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'original_track_number': ('upnp', 'originalTrackNumber'), 'playlist': ('upnp', 'playlist'), 'publisher': ('dc', 'publisher'), 'radio_show': ('r', 'radioShowMd'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'stream_content': ('r', 'streamContent'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlAudioBroadcastFavorite(title, parent_id, item_id,
restricted=True,
resources=None,
desc=’RINCON_AssociatedZPUDN’,
**kwargs)

Class that represents an audio broadcast Sonos favorite.

Parameters

• title (str) – the title for the item.

1.10. soco package 67

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.item.audioItem.audioBroadcast.sonos-favorite'
str - the DIDL Lite class for this object.

tag = 'item'
str - the XML element tag name used for this instance.

_translation = {'album_art_uri': ('upnp', 'albumArtURI'), 'channel_nr': ('upnp', 'channelNr'), 'creator': ('dc', 'creator'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'publisher': ('dc', 'publisher'), 'radio_call_sign': ('upnp', 'radioCallSign'), 'radio_show': ('r', 'radioShowMd'), 'radio_station_id': ('upnp', 'radioStationID'), 'region': ('upnp', 'region'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'stream_content': ('r', 'streamContent'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlFavorite(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=’RINCON_AssociatedZPUDN’, **kwargs)

Class that represents a Sonos favorite.

Note that the favorite itself isn’t playable in all cases, please use the object returned by favorite.
reference instead.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.itemobject.item.sonos-favorite'
str - the DIDL Lite class for this object.

tag = 'item'
str - the XML element tag name used for this instance.

_translation = {'album_art_uri': ('upnp', 'albumArtURI'), 'creator': ('dc', 'creator'), 'description': ('r', 'description'), 'favorite_nr': ('r', 'ordinal'), 'radio_show': ('r', 'radioShowMd'), 'resource_meta_data': ('r', 'resMD'), 'stream_content': ('r', 'streamContent'), 'type': ('r', 'type'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

68 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

reference
The Didl object this favorite refers to.

class soco.data_structures.DidlContainer(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=’RINCON_AssociatedZPUDN’, **kwargs)

Class that represents a music library container.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.container'
str - the DIDL Lite class for this object.

tag = 'container'
str - the XML element tag name used for this instance.

_translation = {'creator': ('dc', 'creator'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlAlbum(title, parent_id, item_id, restricted=True, re-
sources=None, desc=’RINCON_AssociatedZPUDN’,
**kwargs)

A content directory album.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.container.album'
str - the DIDL Lite class for this object.

1.10. soco package 69

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

tag = 'container'
str - the XML element tag name used for this instance.

_translation = {'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'long_description': ('upnp', 'longDescription'), 'publisher': ('dc', 'publisher'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlMusicAlbum(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=’RINCON_AssociatedZPUDN’,
**kwargs)

Class that represents a music library album.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.container.album.musicAlbum'
str - the DIDL Lite class for this object.

tag = 'container'
str - the XML element tag name used for this instance.

_translation = {'album_art_uri': ('upnp', 'albumArtURI'), 'artist': ('upnp', 'artist'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'long_description': ('upnp', 'longDescription'), 'producer': ('upnp', 'producer'), 'publisher': ('dc', 'publisher'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'toc': ('upnp', 'toc'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlMusicAlbumFavorite(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=’RINCON_AssociatedZPUDN’,
**kwargs)

Class that represents a Sonos favorite music library album.

This class is not part of the DIDL spec and is Sonos specific.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

70 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list

soco Documentation, Release 0.27.0

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.container.album.musicAlbum.sonos-favorite'
str - the DIDL Lite class for this object.

tag = 'item'
str - the XML element tag name used for this instance.

_translation = {'album_art_uri': ('upnp', 'albumArtURI'), 'artist': ('upnp', 'artist'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'long_description': ('upnp', 'longDescription'), 'producer': ('upnp', 'producer'), 'publisher': ('dc', 'publisher'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'toc': ('upnp', 'toc'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlMusicAlbumCompilation(title, parent_id, item_id,
restricted=True,
resources=None,
desc=’RINCON_AssociatedZPUDN’,
**kwargs)

Class that represents a Sonos favorite music library compilation.

This class is not part of the DIDL spec and is Sonos specific.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.container.album.musicAlbum.compilation'
str - the DIDL Lite class for this object.

tag = 'container'
str - the XML element tag name used for this instance.

_translation = {'album_art_uri': ('upnp', 'albumArtURI'), 'artist': ('upnp', 'artist'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'long_description': ('upnp', 'longDescription'), 'producer': ('upnp', 'producer'), 'publisher': ('dc', 'publisher'), 'relation': ('dc', 'relation'), 'rights': ('dc', 'rights'), 'toc': ('upnp', 'toc'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlPerson(title, parent_id, item_id, restricted=True, re-
sources=None, desc=’RINCON_AssociatedZPUDN’,
**kwargs)

A content directory class representing a person.

Parameters

• title (str) – the title for the item.

1.10. soco package 71

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.container.person'
str - the DIDL Lite class for this object.

tag = 'item'
str - the XML element tag name used for this instance.

_translation = {'creator': ('dc', 'creator'), 'language': ('dc', 'language'), 'write_status': ('upnp', 'writeStatus')}
dfdf dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also
serves to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlComposer(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=’RINCON_AssociatedZPUDN’, **kwargs)

Class that represents a music library composer.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.container.person.composer'
str - the DIDL Lite class for this object.

tag = 'item'
str - the XML element tag name used for this instance.

_translation = {'creator': ('dc', 'creator'), 'language': ('dc', 'language'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

72 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

class soco.data_structures.DidlMusicArtist(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=’RINCON_AssociatedZPUDN’,
**kwargs)

Class that represents a music library artist.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.container.person.musicArtist'
str - the DIDL Lite class for this object.

tag = 'item'
str - the XML element tag name used for this instance.

_translation = {'artist_discography_uri': ('upnp', 'artistDiscographyURI'), 'creator': ('dc', 'creator'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlAlbumList(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=’RINCON_AssociatedZPUDN’, **kwargs)

Class that represents a music library album list.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.container.albumlist'
str - the DIDL Lite class for this object.

1.10. soco package 73

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

tag = 'container'
str - the XML element tag name used for this instance.

_translation = {'creator': ('dc', 'creator'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlPlaylistContainer(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=’RINCON_AssociatedZPUDN’,
**kwargs)

Class that represents a music library play list.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.container.playlistContainer'
str - the DIDL Lite class for this object.

tag = 'item'
str - the XML element tag name used for this instance.

_translation = {'artist': ('upnp', 'artist'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'producer': ('dc', 'producer'), 'rights': ('dc', 'rights'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlSameArtist(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=’RINCON_AssociatedZPUDN’,
**kwargs)

Class that represents all tracks by a single artist.

This type is returned by browsing an artist or a composer

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

74 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list

soco Documentation, Release 0.27.0

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.container.playlistContainer.sameArtist'
str - the DIDL Lite class for this object.

tag = 'item'
str - the XML element tag name used for this instance.

_translation = {'artist': ('upnp', 'artist'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'producer': ('dc', 'producer'), 'rights': ('dc', 'rights'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlPlaylistContainerFavorite(title, parent_id, item_id,
restricted=True,
resources=None,
desc=’RINCON_AssociatedZPUDN’,
**kwargs)

Class that represents a Sonos favorite play list.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.container.playlistContainer.sonos-favorite'
str - the DIDL Lite class for this object.

tag = 'item'
str - the XML element tag name used for this instance.

_translation = {'artist': ('upnp', 'artist'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'producer': ('dc', 'producer'), 'rights': ('dc', 'rights'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlPlaylistContainerTracklist(title, parent_id, item_id,
restricted=True,
resources=None,
desc=’RINCON_AssociatedZPUDN’,
**kwargs)

Class that represents a Sonos tracklist.

Parameters

1.10. soco package 75

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.container.playlistContainer.tracklist'
str - the DIDL Lite class for this object.

tag = 'item'
str - the XML element tag name used for this instance.

_translation = {'artist': ('upnp', 'artist'), 'contributor': ('dc', 'contributor'), 'creator': ('dc', 'creator'), 'date': ('dc', 'date'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'language': ('dc', 'language'), 'long_description': ('upnp', 'longDescription'), 'producer': ('dc', 'producer'), 'rights': ('dc', 'rights'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlGenre(title, parent_id, item_id, restricted=True, re-
sources=None, desc=’RINCON_AssociatedZPUDN’,
**kwargs)

A content directory class representing a general genre.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.container.genre'
str - the DIDL Lite class for this object.

tag = 'container'
str - the XML element tag name used for this instance.

_translation = {'creator': ('dc', 'creator'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'long_description': ('upnp', 'longDescription'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

76 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

class soco.data_structures.DidlMusicGenre(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=’RINCON_AssociatedZPUDN’,
**kwargs)

Class that represents a music genre.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.container.genre.musicGenre'
str - the DIDL Lite class for this object.

tag = 'item'
str - the XML element tag name used for this instance.

_translation = {'creator': ('dc', 'creator'), 'description': ('dc', 'description'), 'genre': ('upnp', 'genre'), 'long_description': ('upnp', 'longDescription'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.DidlRadioShow(title, parent_id, item_id, re-
stricted=True, resources=None,
desc=’RINCON_AssociatedZPUDN’, **kwargs)

Class that represents a radio show.

Parameters

• title (str) – the title for the item.

• parent_id (str) – the parent ID for the item.

• item_id (str) – the ID for the item.

• restricted (bool) – whether the item can be modified. Default True

• resources (list, optional) – a list of resources for this object.

• None. (Default) –

• desc (str) – A DIDL descriptor, default 'RINCON_AssociatedZPUDN'. This is not
the same as “description”. It is used for identifying the relevant third party music service.

• **kwargs – Extra metadata. What is allowed depends on the _translation class
attribute, which in turn depends on the DIDL class.

item_class = 'object.container.radioShow'
str - the DIDL Lite class for this object.

1.10. soco package 77

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

tag = 'container'
str - the XML element tag name used for this instance.

_translation = {'creator': ('dc', 'creator'), 'write_status': ('upnp', 'writeStatus')}
dict - A dict used to translate between instance attribute names and XML tags/namespaces. It also serves
to define the allowed tags/attributes for this instance. Each key an attribute name and each key is a
(namespace, tag) tuple.

class soco.data_structures.ListOfMusicInfoItems(items, number_returned, to-
tal_matches, update_id)

Abstract container class for a list of music information items.

Instances of this class are returned from queries into the music library or to music services. The attributes
total_matches and number_returned are used to ascertain whether paging is required in order
to retrive all elements of the query. total_matches is the total number of results to the query and
number_returned is the number of results actually returned. If the two differ, paging is required. Pag-
ing is typically performed with the start and max_items arguments to the query method. See e.g. the
get_music_library_information() method for details.

number_returned
the number of returned matches.

Type str

total_matches
the number of total matches.

Type str

update_id
the update ID.

Type str

class soco.data_structures.SearchResult(items, search_type, number_returned, to-
tal_matches, update_id)

Container class that represents a search or browse result.

Browse is just a special case of search.

search_type
the search type.

Type str

class soco.data_structures.Queue(items, number_returned, total_matches, update_id)
Container class that represents a queue.

1.10.2.6 soco.discovery module

This module contains methods for discovering Sonos devices on the network.

soco.discovery.discover(timeout=5, include_invisible=False, interface_addr=None, al-
low_network_scan=False, **network_scan_kwargs)

Discover Sonos zones on the local network.

Return a set of SoCo instances for each zone found. Include invisible zones (bridges and slave zones in stereo
pairs if include_invisible is True. Will block for up to timeout seconds, after which return None if
no zones found.

Note that the presence of a SoCo object in the returned set is not a guarantee that the associated Sonos player is
currently contactable. This is because the set of SoCo objects is generated by interrogating the first discovered

78 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None

soco Documentation, Release 0.27.0

player to determine the current set of players, and this data can lag the actual state of the system, e.g., if a speaker
has been recently switched off.

Parameters

• timeout (int, optional) – block for this many seconds, at most. Defaults to 5.

• include_invisible (bool, optional) – include invisible zones in the return set.
Defaults to False.

• interface_addr (str or None) – Discovery operates by sending UDP multicast
datagrams. interface_addr is a string (dotted quad) representation of the network
interface address to use as the source of the datagrams (i.e., it is a value for socket.
IP_MULTICAST_IF). If None or not specified, the system default interface(s) for UDP
multicast messages will be used. This is probably what you want to happen. Defaults to
None.

• allow_network_scan (bool, optional) – If normal discovery fails, fall back to a
scan of the attached network(s) to detect Sonos devices.

• **network_scan_kwargs – Arguments for the scan_network function. See its
docstring for details.

Returns a set of SoCo instances, one for each zone found, or else None.

Return type set

soco.discovery.any_soco(allow_network_scan=False, **network_scan_kwargs)
Return any visible soco device, for when it doesn’t matter which.

Try to obtain an existing instance, or use discover if necessary. Note that this assumes that the existing
instance has not left the network.

Parameters

• allow_network_scan (bool, optional) – If normal discovery fails, fall back to a
scan of the attached network(s) to detect Sonos devices.

• **network_scan_kwargs – Arguments for the scan_network function. See its
docstring for details.

Returns A SoCo instance (or subclass if config.SOCO_CLASS is set), or None if no instances
are found.

Return type SoCo

soco.discovery.by_name(name, allow_network_scan=False, **network_scan_kwargs)
Return a device by name.

Parameters

• name (str) – The name of the device to return.

• allow_network_scan (bool, optional) – If normal discovery fails, fall back to a
scan of the attached network(s) to detect Sonos devices.

• **network_scan_kwargs – Arguments for the scan_network function. See its
docstring for details.

Returns A SoCo instance (or subclass if config.SOCO_CLASS is set), or None if no instances
are found.

Return type SoCo

1.10. soco package 79

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/socket.html#module-socket
https://docs.python.org/3/library/socket.html#module-socket
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

soco Documentation, Release 0.27.0

soco.discovery.scan_network(include_invisible=False, multi_household=False, max_threads=256,
scan_timeout=0.1, min_netmask=24, networks_to_scan=None)

Scan all attached networks for Sonos devices.

This function scans the IPv4 networks to which this node is attached, searching for Sonos devices. Multiple
parallel threads are used to scan IP addresses in parallel for faster discovery.

Public, loopback and link local IP ranges are excluded from the scan, and the scope of the search can be
controlled by setting a minimum netmask.

Alternatively, a list of networks to scan can be provided.

This function is intended for use when the usual discovery function is not working, perhaps due to multicast
problems on the network to which the SoCo host is attached. The function can also be used to find a complete
list of speakers when there are multiple Sonos households present. For example, this is the case where there are
‘split’ S1/S2 Sonos systems on the network.

Note that this call may fail to find speakers present on the network, and this can be due to ARP cache misses and
ARP requests that don’t complete within the timeout. The call can be retried with longer values for scan_timeout
if necessary.

Note also that the presence of a SoCo object in the returned set is not a guarantee that the associated Sonos
player is currently contactable. This is because the set of SoCo objects is partly generated by interrogating
discovered players to determine the current set(s) of players, and this can lag the actual state of the system, e.g.,
if a speaker has been recently switched off.

Parameters

• include_invisible (bool, optional) – Whether to include invisible Sonos de-
vices in the set of devices returned.

• multi_household (bool, optional) – Whether to find all the speakers on the net-
work exhaustively. If set to False, discovery will stop as soon as at least one speaker is
found. In the case of multiple households on the attached networks, this means that only
the speakers from the first-discovered household will be returned. If set to True, discovery
will proceed until all speakers, from all households, have been found.

• max_threads (int, optional) – The maximum number of threads to use when scan-
ning the network.

• scan_timeout (float, optional) – The network timeout in seconds to use when
checking each IP address for a Sonos device.

• min_netmask (int, optional) – The minimum number of netmask bits. Used to
constrain the network search space.

• networks_to_scan (list, optional) – A list of IPv4 networks to search, each
a str of form “192.168.0.1/24”. Only the specified networks will be searched. The
‘min_netmask’ option (if supplied) is ignored.

Returns A set of SoCo instances, one for each zone found, or else None.

Return type set

soco.discovery.scan_network_by_household_id(household_id, include_invisible=False,
**network_scan_kwargs)

Convenience function to find the zones in a specific Sonos household.

Parameters

• household_id (str) – The Sonos household ID to search for. IDs take the form
‘Sonos_XXXXXXXXXXXXXXXXXXXXXXXXXX’.

80 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

• include_invisible (bool, optional) – Whether to include invisible Sonos de-
vices in the set of devices returned.

• **network_scan_kwargs – Arguments for the scan_network function. See its
docstring for details. (Note that the argument ‘multi_household’ is forced to True when
this function is called.)

Returns A set of SoCo instances, one for each zone found, or else None.

Return type set

soco.discovery.scan_network_get_household_ids(**network_scan_kwargs)
Convenience function to find the all Sonos households on the attached networks.

Parameters **network_scan_kwargs – Arguments for the scan_network function. See
its docstring for details. (Note that the argument ‘multi_household’ is forced to True when this
function is called.)

Returns A set of Sonos household IDs, each in the form of a str like
‘Sonos_XXXXXXXXXXXXXXXXXXXXXXXXXX’.

Return type set

soco.discovery.scan_network_get_by_name(name, household_id=None, **net-
work_scan_kwargs)

Convenience function to use scan_network to find a zone by its name.

Note that if there are multiple zones with the same name, then only one of the zones will be returned. Optionally,
the search can be constrained to a specific household.

Parameters

• name (str) – The name of the zone to find.

• household_id (str, optional) – Use this to find the zone in a specific Sonos house-
hold.

• **network_scan_kwargs – Arguments for the scan_network function. See its
docstring for details. (Note that the argument ‘multi_household’ is forced to True when
this function is called.)

Returns A SoCo instance representing the zone, or None if no matching zone is found. Only
returns visible zones.

Return type SoCo

soco.discovery.scan_network_any_soco(household_id=None, **network_scan_kwargs)
Convenience function to use scan_network to find any zone, optionally specifying a Sonos household.

Parameters

• household_id (str, optional) – Use this to find a zone in a specific Sonos house-
hold.

• **network_scan_kwargs – Arguments for the scan_network function. See its
docstring for details.

Returns A SoCo instance representing the zone, or None if no zone is found (or no zone is found
that matches a supplied household_id).

Return type SoCo

soco.discovery.contactable(speakers)
Find only contactable players in a set of SoCo objects.

1.10. soco package 81

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

soco Documentation, Release 0.27.0

This function checks a set of SoCo objects to ensure that each associated Sonos player is currently contactable.
A new set is returned containing only contactable players.

If there are non-contactable players, the function return will be delayed until at least one network timeout has
expired (several seconds). Contact attempts run in parallel threads to minimise delays.

Parameters speakers (set) – A set of SoCo objects.

Returns A set of SoCo objects, all of which have been confirmed to be currently contactable. An
empty set is returned if no speakers are contactable.

Return type set

1.10.2.7 soco.events module

Classes to handle Sonos UPnP Events and Subscriptions.

The Subscription class from this module will be used in soco.services unless config.EVENTS_MODULE
is set to point to soco.events_twisted, in which case soco.events_twisted.Subscription will be
used. See the Example in soco.events_twisted.

Example

Run this code, and change your volume, tracks etc:

from queue import Empty

import logging
logging.basicConfig()
import soco
from pprint import pprint
from soco.events import event_listener
pick a device at random and use it to get
the group coordinator
device = soco.discover().pop().group.coordinator
print (device.player_name)
sub = device.renderingControl.subscribe()
sub2 = device.avTransport.subscribe()

while True:
try:

event = sub.events.get(timeout=0.5)
pprint (event.variables)

except Empty:
pass

try:
event = sub2.events.get(timeout=0.5)
pprint (event.variables)

except Empty:
pass

except KeyboardInterrupt:
sub.unsubscribe()
sub2.unsubscribe()
event_listener.stop()
break

82 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set

soco Documentation, Release 0.27.0

class soco.events.EventServer(server_address, RequestHandlerClass, bind_and_activate=True)
A TCP server which handles each new request in a new thread.

Constructor. May be extended, do not override.

class soco.events.EventNotifyHandler(*args, **kwargs)
Handles HTTP NOTIFY Verbs sent to the listener server. Inherits from soco.events_base.
EventNotifyHandlerBase.

do_NOTIFY()
Serve a NOTIFY request by calling handle_notification with the headers and content.

log_message(fmt, *args)
Log an arbitrary message.

This is used by all other logging functions. Override it if you have specific logging wishes.

The first argument, FORMAT, is a format string for the message to be logged. If the format string con-
tains any % escapes requiring parameters, they should be specified as subsequent arguments (it’s just like
printf!).

The client ip and current date/time are prefixed to every message.

class soco.events.EventServerThread(server)
The thread in which the event listener server will run.

Parameters address (tuple) – The (ip, port) address on which the server should listen.

stop_flag = None
Used to signal that the server should stop.

Type threading.Event

server = None
The (ip, port) address on which the server is configured to listen.

Type tuple

run()
Start the server

Handling of requests is delegated to an instance of the EventNotifyHandler class.

stop()
Stop the server.

class soco.events.EventListener
The Event Listener.

Runs an http server in a thread which is an endpoint for NOTIFY requests from Sonos devices. Inherits from
soco.events_base.EventListenerBase.

listen(ip_address)
Start the event listener listening on the local machine at port 1400 (default). If this port is unavailable, the
listener will attempt to listen on the next available port, within a range of 100.

Make sure that your firewall allows connections to this port.

This method is called by soco.events_base.EventListenerBase.start

Parameters ip_address (str) – The local network interface on which the server should
start listening.

Returns requested_port_number. Included for compatibility with soco.
events_twisted.EventListener.listen

1.10. soco package 83

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

Return type int

Note: The port on which the event listener listens is configurable. See config.
EVENT_LISTENER_PORT

stop_listening(address)
Stop the listener.

class soco.events.Subscription(service, event_queue=None)
A class representing the subscription to a UPnP event. Inherits from soco.events_base.
SubscriptionBase.

Parameters

• service (Service) – The SoCo Service to which the subscription should be made.

• event_queue (Queue) – A queue on which received events will be put. If not specified,
a queue will be created and used.

subscribe(requested_timeout=None, auto_renew=False, strict=True)
Subscribe to the service.

If requested_timeout is provided, a subscription valid for that number of seconds will be requested, but not
guaranteed. Check timeout on return to find out what period of validity is actually allocated.

This method calls events_base.SubscriptionBase.subscribe.

Note: SoCo will try to unsubscribe any subscriptions which are still subscribed on program termination,
but it is good practice for you to clean up by making sure that you call unsubscribe() yourself.

Parameters

• requested_timeout (int, optional) – The timeout to be requested.

• auto_renew (bool, optional) – If True, renew the subscription automatically
shortly before timeout. Default False.

• strict (bool, optional) – If True and an Exception occurs during execution, the
Exception will be raised or, if False, the Exception will be logged and the Subscription
instance will be returned. Default True.

Returns The Subscription instance.

Return type Subscription

renew(requested_timeout=None)
Renew the event subscription. You should not try to renew a subscription which has been unsubscribed, or
once it has expired.

This method calls events_base.SubscriptionBase.renew .

Parameters

• requested_timeout (int, optional) – The period for which a renewal request
should be made. If None (the default), use the timeout requested on subscription.

• is_autorenew (bool, optional) – Whether this is an autorenewal. Default
‘False’.

84 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

soco Documentation, Release 0.27.0

• strict (bool, optional) – If True and an Exception occurs during execution, the
Exception will be raised or, if False, the Exception will be logged and the Subscription
instance will be returned. Default True.

Returns The Subscription instance.

Return type Subscription

unsubscribe()
Unsubscribe from the service’s events. Once unsubscribed, a Subscription instance should not be reused

This method calls events_base.SubscriptionBase.unsubscribe.

Parameters strict (bool, optional) – If True and an Exception occurs during execu-
tion, the Exception will be raised or, if False, the Exception will be logged and the Subscrip-
tion instance will be returned. Default True.

Returns The Subscription instance.

Return type Subscription

1.10.2.8 soco.events_base module

Base classes used by soco.events and soco.events_twisted.

soco.events_base.parse_event_xml
Parse the body of a UPnP event.

Parameters xml_event (bytes) – bytes containing the body of the event encoded with utf-8.

Returns

A dict with keys representing the evented variables. The relevant value will usually be a string
representation of the variable’s value, but may on occasion be:

• a dict (eg when the volume changes, the value will itself be a dict containing the volume
for each channel: {'Volume': {'LF': '100', 'RF': '100', 'Master':
'36'}})

• an instance of a DidlObject subclass (eg if it represents track metadata).

• a SoCoFault (if a variable contains illegal metadata)

Return type dict

class soco.events_base.Event(sid, seq, service, timestamp, variables=None)
A read-only object representing a received event.

The values of the evented variables can be accessed via the variables dict, or as attributes on the instance
itself. You should treat all attributes as read-only.

Parameters

• sid (str) – the subscription id.

• seq (str) – the event sequence number for that subscription.

• timestamp (str) – the time that the event was received (from Python’s time.time
function).

• service (str) – the service which is subscribed to the event.

• variables (dict, optional) – contains the {names: values} of the evented
variables. Defaults to None. The values may be SoCoFault objects if the metadata could
not be parsed.

1.10. soco package 85

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/time.html#time.time
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

soco Documentation, Release 0.27.0

Raises AttributeError – Not all attributes are returned with each event. An
AttributeError will be raised if you attempt to access as an attribute a variable which
was not returned in the event.

Example

>>> print event.variables['transport_state']
'STOPPED'
>>> print event.transport_state
'STOPPED'

class soco.events_base.EventNotifyHandlerBase
Base class for soco.events.EventNotifyHandler and soco.events_twisted.
EventNotifyHandler.

handle_notification(headers, content)
Handle a NOTIFY request by building an Event object and sending it to the relevant Subscription object.

A NOTIFY request will be sent by a Sonos device when a state variable changes. See the UPnP Spec §4.3
[pdf] for details.

Parameters

• headers (dict) – A dict of received headers.

• content (str) – A string of received content.

Note: Each of the soco.events and the soco.events_twisted modules has a subscrip-
tions_map object which keeps a record of Subscription objects. The get_subscription method of the
subscriptions_map object is used to look up the subscription to which the event relates. When the Event
Listener runs in a thread (the default), a lock is used by this method for thread safety. The send_event
method of the relevant Subscription will first check to see whether the callback variable of the Subscrip-
tion has been set. If it has been and is callable, then the callback will be called with the Event object.
Otherwise, the Event object will be sent to the event queue of the Subscription object. The callback
variable of the Subscription object is intended for use only if soco.events_twisted is being used,
as calls to it are not threadsafe.

This method calls the log_event method, which must be overridden in the class that inherits from this class.

class soco.events_base.EventListenerBase
Base class for soco.events.EventListener and soco.events_twisted.EventListener.

is_running = None
Indicates whether the server is currently running

Type bool

requested_port_number = None
Port on which to listen.

Type int

start(any_zone)
Start the event listener listening on the local machine.

Parameters any_zone (SoCo) – Any Sonos device on the network. It does not matter which
device. It is used only to find a local IP address reachable by the Sonos net.

86 Chapter 1. Contents

https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/exceptions.html#AttributeError
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

soco Documentation, Release 0.27.0

stop()
Stop the Event Listener.

listen(ip_address)
Start the event listener listening on the local machine. This method is called by start.

Parameters ip_address (str) – The local network interface on which the server should
start listening.

Returns The port on which the server is listening.

Return type int

Note: This method must be overridden in the class that inherits from this class.

stop_listening(address)
Stop the listener.

Note: This method must be overridden in the class that inherits from this class.

class soco.events_base.SubscriptionBase(service, event_queue=None)
Base class for soco.events.Subscription and soco.events_twisted.Subscription

Parameters

• service (Service) – The SoCo Service to which the subscription should be made.

• event_queue (Queue) – A queue on which received events will be put. If not specified,
a queue will be created and used.

sid = None
A unique ID for this subscription

Type str

timeout = None
The amount of time in seconds until the subscription expires.

Type int

is_subscribed = None
An indication of whether the subscription is subscribed.

Type bool

events = None
The queue on which events are placed.

Type Queue

requested_timeout = None
The period (seconds) for which the subscription is requested

Type int

auto_renew_fail = None
an optional function to be called if an exception occurs upon autorenewal. This will be called with the
exception (or failure, when using soco.events_twisted) as its only parameter. This function must
be threadsafe (unless soco.events_twisted is being used).

Type function

1.10. soco package 87

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/functions.html#int

soco Documentation, Release 0.27.0

subscribe(requested_timeout=None, auto_renew=False)
Subscribe to the service.

If requested_timeout is provided, a subscription valid for that number of seconds will be requested, but not
guaranteed. Check timeout on return to find out what period of validity is actually allocated.

Note: SoCo will try to unsubscribe any subscriptions which are still subscribed on program termination,
but it is good practice for you to clean up by making sure that you call unsubscribe() yourself.

Parameters

• requested_timeout (int, optional) – The timeout to be requested.

• auto_renew (bool, optional) – If True, renew the subscription automatically
shortly before timeout. Default False.

renew(requested_timeout=None)
Renew the event subscription. You should not try to renew a subscription which has been unsubscribed, or
once it has expired.

Parameters

• requested_timeout (int, optional) – The period for which a renewal request
should be made. If None (the default), use the timeout requested on subscription.

• is_autorenew (bool, optional) – Whether this is an autorenewal.

unsubscribe()
Unsubscribe from the service’s events. Once unsubscribed, a Subscription instance should not be reused

send_event(event)
Send an Event to self.callback or self.events. If self.callback is set and is callable, it will be called with
the Event as the only parameter. Otherwise the Event will be sent to self.events. As self.callback is not
threadsafe, it should be set only if soco.events_twisted.Subscription is being used.

Parameters event (Event) – The Event to send to self.callback or self.events.

time_left
The amount of time left until the subscription expires (seconds) If the subscription is unsubscribed (or not
yet subscribed), time_left is 0.

Type int

class soco.events_base.SubscriptionsMap
Maintains a mapping of sids to soco.events.Subscription instances and the thread safe lock to go with
it. Registers each subscription to be unsubscribed at exit.

SubscriptionsMapTwisted inherits from this class.

subscriptions = None
Thread safe mapping. Used to store a mapping of sid to subscription

Type weakref.WeakValueDictionary

subscriptions_lock = None
for use with subscriptions

Type threading.Lock

88 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/weakref.html#weakref.WeakValueDictionary
https://docs.python.org/3/library/threading.html#threading.Lock

soco Documentation, Release 0.27.0

register(subscription)
Register a subscription by updating local mapping of sid to subscription and registering it to be unsub-
scribed at exit.

Parameters subscription (soco.events.Subscription) – the subscription to be
registered.

unregister(subscription)
Unregister a subscription by updating local mapping of sid to subscription instances.

Parameters subscription (soco.events.Subscription) – the subscription to be
unregistered.

When using soco.events_twisted, an instance of soco.events_twisted.Subscription
will be unregistered.

get_subscription(sid)
Look up a subscription from a sid.

Args: sid(str): The sid from which to look up the subscription.

Returns: soco.events.Subscription: The subscription relating to that sid.

When using soco.events_twisted, an instance of soco.events_twisted.Subscription
will be returned.

count
The number of active subscriptions.

Type int

soco.events_base.get_listen_ip(ip_address)
Find the listen ip address.

1.10.2.9 soco.events_twisted module

Classes to handle Sonos UPnP Events and Subscriptions.

The Subscription class from this module will be used in soco.services if config.EVENTS_MODULE is
set to point to this module.

Example

Run this code, and change your volume, tracks etc:

from __future__ import print_function
import logging
logging.basicConfig()
import soco
from pprint import pprint

from soco import events_twisted
soco.config.EVENTS_MODULE = events_twisted
from twisted.internet import reactor

def print_event(event):
try:

pprint (event.variables)
except Exception as e:

(continues on next page)

1.10. soco package 89

https://docs.python.org/3/library/functions.html#int

soco Documentation, Release 0.27.0

(continued from previous page)

pprint ('There was an error in print_event:', e)

def main():
pick a device at random and use it to get
the group coordinator
device = soco.discover().pop().group.coordinator
print (device.player_name)
sub = device.renderingControl.subscribe().subscription
sub2 = device.avTransport.subscribe().subscription
sub.callback = print_event
sub2.callback = print_event

def before_shutdown():
sub.unsubscribe()
sub2.unsubscribe()
events_twisted.event_listener.stop()

reactor.addSystemEventTrigger(
'before', 'shutdown', before_shutdown)

if __name__=='__main__':
reactor.callWhenRunning(main)
reactor.run()

class soco.events_twisted.Resource
Fake Resource class to use when building docs

class soco.events_twisted.EventNotifyHandler
Handles HTTP NOTIFY Verbs sent to the listener server. Inherits from soco.events_base.
EventNotifyHandlerBase.

render_NOTIFY(request)
Serve a NOTIFY request by calling handle_notification with the headers and content.

class soco.events_twisted.EventListener
The Event Listener.

Runs an http server which is an endpoint for NOTIFY requests from Sonos devices. Inherits from soco.
events_base.EventListenerBase.

port = None
set at listen

Type twisted.internet.tcp.Port

listen(ip_address)
Start the event listener listening on the local machine at port 1400 (default). If this port is unavailable, the
listener will attempt to listen on the next available port, within a range of 100.

Make sure that your firewall allows connections to this port.

This method is called by soco.events_base.EventListenerBase.start

Handling of requests is delegated to an instance of the EventNotifyHandler class.

Parameters ip_address (str) – The local network interface on which the server should
start listening.

Returns The port on which the server is listening.

Return type int

90 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

soco Documentation, Release 0.27.0

Note: The port on which the event listener listens is configurable. See config.
EVENT_LISTENER_PORT

stop_listening(address)
Stop the listener.

class soco.events_twisted.Subscription(service, event_queue=None)
A class representing the subscription to a UPnP event. Inherits from soco.events_base.
SubscriptionBase.

Parameters

• service (Service) – The SoCo Service to which the subscription should be made.

• event_queue (Queue) – A queue on which received events will be put. If not specified,
a queue will be created and used.

callback = None
callback function to be called whenever an Event is received. If it is set and is callable, the callback
function will be called with the Event as the only parameter and the Subscription’s event queue won’t be
used.

Type function

subscribe(requested_timeout=None, auto_renew=False, strict=True)
Subscribe to the service.

If requested_timeout is provided, a subscription valid for that number of seconds will be requested, but not
guaranteed. Check timeout on return to find out what period of validity is actually allocated.

This method calls events_base.SubscriptionBase.subscribe.

Note: SoCo will try to unsubscribe any subscriptions which are still subscribed on program termination,
but it is good practice for you to clean up by making sure that you call unsubscribe() yourself.

Parameters

• requested_timeout (int, optional) – The timeout to be requested.

• auto_renew (bool, optional) – If True, renew the subscription automatically
shortly before timeout. Default False.

• strict (bool, optional) – If True and an Exception occurs during execution, the
returned Deferred will fail with a Failure which will be passed to the applicable errback
(if any has been set by the calling code) or, if False, the Failure will be logged and the
Subscription instance will be passed to the applicable callback (if any has been set by the
calling code). Default True.

Returns A Deferred the result of which will be the Subscription instance and the subscription
property of which will point to the Subscription instance.

Return type Deferred

renew(requested_timeout=None)
Renew the event subscription. You should not try to renew a subscription which has been unsubscribed, or
once it has expired.

This method calls events_base.SubscriptionBase.renew .

1.10. soco package 91

https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html
https://docs.python.org/3/library/constants.html#True
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html

soco Documentation, Release 0.27.0

Parameters

• requested_timeout (int, optional) – The period for which a renewal request
should be made. If None (the default), use the timeout requested on subscription.

• is_autorenew (bool, optional) – Whether this is an autorenewal. Default
False.

• strict (bool, optional) – If True and an Exception occurs during execution, the
returned Deferred will fail with a Failure which will be passed to the applicable errback
(if any has been set by the calling code) or, if False, the Failure will be logged and the
Subscription instance will be passed to the applicable callback (if any has been set by the
calling code). Default True.

Returns A Deferred the result of which will be the Subscription instance and the subscription
property of which will point to the Subscription instance.

Return type Deferred

unsubscribe()
Unsubscribe from the service’s events. Once unsubscribed, a Subscription instance should not be reused

This method calls events_base.SubscriptionBase.unsubscribe.

Parameters strict (bool, optional) – If True and an Exception occurs during execu-
tion, the returned Deferred will fail with a Failure which will be passed to the applicable
errback (if any has been set by the calling code) or, if False, the Failure will be logged and
the Subscription instance will be passed to the applicable callback (if any has been set by the
calling code). Default True.

Returns A Deferred the result of which will be the Subscription instance and the subscription
property of which will point to the Subscription instance.

Return type Deferred

class soco.events_twisted.SubscriptionsMapTwisted
Maintains a mapping of sids to soco.events_twisted.Subscription instances. Registers each sub-
scription to be unsubscribed at exit.

Inherits from soco.events_base.SubscriptionsMap.

register(subscription)
Register a subscription by updating local mapping of sid to subscription and registering it to be unsub-
scribed at exit.

Parameters subscription (soco.events_twisted.Subscription) – the sub-
scription to be registered.

subscribing()
Called when the Subscription.subscribe method commences execution.

finished_subscribing()
Called when the Subscription.subscribe method completes execution.

count
The number of active or pending subscriptions.

Type int

92 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html
https://docs.python.org/3/library/constants.html#True
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
https://docs.python.org/3/library/functions.html#bool
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html
https://docs.python.org/3/library/constants.html#True
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
https://docs.python.org/3/library/functions.html#int

soco Documentation, Release 0.27.0

1.10.2.10 soco.events_asyncio module

1.10.2.11 soco.exceptions module

Exceptions that are used by SoCo.

exception soco.exceptions.SoCoException
Base class for all SoCo exceptions.

exception soco.exceptions.UnknownSoCoException
An unknown UPnP error.

The exception object will contain the raw response sent back from the speaker as the first of its args.

exception soco.exceptions.SoCoUPnPException(message, error_code, error_xml, er-
ror_description=”)

A UPnP Fault Code, raised in response to actions sent over the network.

Parameters

• message (str) – The message from the server.

• error_code (str) – The UPnP Error Code as a string.

• error_xml (str) – The xml containing the error, as a utf-8 encoded string.

• error_description (str) – A description of the error. Default is “”

exception soco.exceptions.CannotCreateDIDLMetadata
Deprecated since version 0.11: Use DIDLMetadataError instead.

exception soco.exceptions.DIDLMetadataError
Raised if a data container class cannot create the DIDL metadata due to missing information.

For backward compatibility, this is currently a subclass of CannotCreateDIDLMetadata. In a future
version, it will likely become a direct subclass of SoCoException.

exception soco.exceptions.MusicServiceException
An error relating to a third party music service.

exception soco.exceptions.MusicServiceAuthException
An error relating to authentication of a third party music service

exception soco.exceptions.UnknownXMLStructure
Raised if XML with an unknown or unexpected structure is returned.

exception soco.exceptions.SoCoSlaveException
Raised when a master command is called on a slave.

exception soco.exceptions.SoCoNotVisibleException
Raised when a command intended for a visible speaker is called on an invisible one.

exception soco.exceptions.NotSupportedException
Raised when something is not supported by the device

exception soco.exceptions.EventParseException(tag, metadata, cause)
Raised when a parsing exception occurs during event handling.

tag
The tag for which the exception occured

Type str

metadata
The metadata which failed to parse

1.10. soco package 93

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

Type str

__cause__
The original exception

Type Exception

Parameters

• tag (str) – The tag for which the exception occured

• metadata (str) – The metadata which failed to parse

• cause (Exception) – The original exception

class soco.exceptions.SoCoFault(exception)
Class to represent a failed object instantiation.

It rethrows the exception on common use.

exception
The exception which will be thrown on use

Parameters exception (Exception) – The exception which should be thrown on use

1.10.2.12 soco.groups module

This module contains classes and functionality relating to Sonos Groups.

class soco.groups.ZoneGroup(uid, coordinator, members=None)
A class representing a Sonos Group. It looks like this:

ZoneGroup(
uid='RINCON_000FD584236D01400:58',
coordinator=SoCo("192.168.1.101"),
members={SoCo("192.168.1.101"), SoCo("192.168.1.102")}

)

Any SoCo instance can tell you what group it is in:

>>> device = soco.discovery.any_soco()
>>> device.group
ZoneGroup(

uid='RINCON_000FD584236D01400:58',
coordinator=SoCo("192.168.1.101"),
members={SoCo("192.168.1.101"), SoCo("192.168.1.102")}

)

From there, you can find the coordinator for the current group:

>>> device.group.coordinator
SoCo("192.168.1.101")

or, for example, its name:

>>> device.group.coordinator.player_name
Kitchen

or a set of the members:

94 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

soco Documentation, Release 0.27.0

>>> device.group.members
{SoCo("192.168.1.101"), SoCo("192.168.1.102")}

For convenience, ZoneGroup is also a container:

>>> for player in device.group:
... print player.player_name
Living Room
Kitchen

If you need it, you can get an iterator over all groups on the network:

>>> device.all_groups
<generator object all_groups at 0x108cf0c30>

A consistent readable label for the group members can be returned with the label and short_label prop-
erties.

Properties are available to get and set the group volume and the group mute state, and the
set_relative_volume() method can be used to make relative adjustments to the group volume, e.g.:

>>> device.group.volume = 25
>>> device.group.volume
25
>>> device.group.set_relative_volume(-10)
15
>>> device.group.mute
>>> False
>>> device.group.mute = True
>>> device.group.mute
True

Parameters

• uid (str) – The unique Sonos ID for this group, eg
RINCON_000FD584236D01400:5.

• coordinator (SoCo) – The SoCo instance representing the coordinator of this group.

• members (Iterable[SoCo]) – An iterable containing SoCo instances which represent
the members of this group.

uid = None
The unique Sonos ID for this group

coordinator = None
The SoCo instance which coordinates this group

members = None
A set of SoCo instances which are members of the group

label
A description of the group.

>>> device.group.label
'Kitchen, Living Room'

Type str

1.10. soco package 95

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

short_label
A short description of the group.

>>> device.group.short_label
'Kitchen + 1'

Type str

volume
The volume of the group.

An integer between 0 and 100.

Type int

mute
The mute state for the group.

True or False.

Type bool

set_relative_volume(relative_group_volume)
Adjust the group volume up or down by a relative amount.

If the adjustment causes the volume to overshoot the maximum value of 100, the volume will be set to 100.
If the adjustment causes the volume to undershoot the minimum value of 0, the volume will be set to 0.

Note that this method is an alternative to using addition and subtraction assignment operators (+=, -=)
on the volume property of a ZoneGroup instance. These operators perform the same function as
set_relative_volume() but require two network calls per operation instead of one.

Parameters relative_group_volume (int) – The relative volume adjustment. Can be
positive or negative.

Returns The new group volume setting.

Return type int

Raises ValueError – If relative_group_volume cannot be cast as an integer.

1.10.2.13 soco.ms_data_structures module

This module contains all the data structures for music service plugins.

soco.ms_data_structures.get_ms_item(xml, service, parent_id)
Return the music service item that corresponds to xml.

The class is identified by getting the type from the ‘itemType’ tag

soco.ms_data_structures.tags_with_text(xml, tags=None)
Return a list of tags that contain text retrieved recursively from an XML tree.

class soco.ms_data_structures.MusicServiceItem(**kwargs)
Class that represents a music service item.

classmethod from_xml(xml, service, parent_id)
Return a Music Service item generated from xml.

Parameters

96 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

soco Documentation, Release 0.27.0

• xml (xml.etree.ElementTree.Element) – Object XML. All items containing
text are added to the content of the item. The class variable valid_fields of each of
the classes list the valid fields (after translating the camel case to underscore notation).
Required fields are listed in the class variable by that name (where ‘id’ has been renamed
to ‘item_id’).

• service (Instance of sub-class of soco.plugins.SoCoPlugin) – The mu-
sic service (plugin) instance that retrieved the element. This service must con-
tain id_to_extended_id and form_uri methods and description and
service_id attributes.

• parent_id (str) – The parent ID of the item, will either be the extended ID of another
MusicServiceItem or of a search

For a track the XML can e.g. be on the following form:

<mediaMetadata xmlns="http://www.sonos.com/Services/1.1">
<id>trackid_141359</id>
<itemType>track</itemType>
<mimeType>audio/aac</mimeType>
<title>Teacher</title>
<trackMetadata>
<artistId>artistid_10597</artistId>
<artist>Jethro Tull</artist>
<composerId>artistid_10597</composerId>
<composer>Jethro Tull</composer>
<albumId>albumid_141358</albumId>
<album>MU - The Best Of Jethro Tull</album>
<albumArtistId>artistid_10597</albumArtistId>
<albumArtist>Jethro Tull</albumArtist>
<duration>229</duration>
<albumArtURI>http://varnish01.music.aspiro.com/sca/
imscale?h=90&w=90&img=/content/music10/prod/wmg/
1383757201/094639008452_20131105025504431/resources/094639008452.
jpg</albumArtURI>

<canPlay>true</canPlay>
<canSkip>true</canSkip>
<canAddToFavorites>true</canAddToFavorites>

</trackMetadata>
</mediaMetadata>

classmethod from_dict(dict_in)
Initialize the class from a dict.

Parameters dict_in (dict) – The dictionary that contains the item content. Required fields
are listed class variable by that name

to_dict
Return a copy of the content dict.

didl_metadata
Return the DIDL metadata for a Music Service Track.

The metadata is on the form:

<DIDL-Lite xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:upnp="urn:schemas-upnp-org:metadata-1-0/upnp/"
xmlns:r="urn:schemas-rinconnetworks-com:metadata-1-0/"
xmlns="urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/">

(continues on next page)

1.10. soco package 97

https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

soco Documentation, Release 0.27.0

(continued from previous page)

<item id="...self.extended_id..."
parentID="...self.parent_id..."
restricted="true">

<dc:title>...self.title...</dc:title>
<upnp:class>...self.item_class...</upnp:class>
<desc id="cdudn"

nameSpace="urn:schemas-rinconnetworks-com:metadata-1-0/">
self.content['description']

</desc>
</item>

</DIDL-Lite>

item_id
Return the item id.

extended_id
Return the extended id.

title
Return the title.

service_id
Return the service ID.

can_play
Return a boolean for whether the item can be played.

parent_id
Return the extended parent_id, if set, otherwise return None.

album_art_uri
Return the album art URI if set, otherwise return None.

class soco.ms_data_structures.MSTrack(title, item_id, extended_id, uri, description, service_id,
**kwargs)

Class that represents a music service track.

Initialize MSTrack item.

album
Return the album title if set, otherwise return None.

artist
Return the artist if set, otherwise return None.

duration
Return the duration if set, otherwise return None.

uri
Return the URI.

class soco.ms_data_structures.MSAlbum(title, item_id, extended_id, uri, description, service_id,
**kwargs)

Class that represents a Music Service Album.

artist
Return the artist if set, otherwise return None.

uri
Return the URI.

98 Chapter 1. Contents

soco Documentation, Release 0.27.0

class soco.ms_data_structures.MSAlbumList(title, item_id, extended_id, uri, description, ser-
vice_id, **kwargs)

Class that represents a Music Service Album List.

uri
Return the URI.

class soco.ms_data_structures.MSPlaylist(title, item_id, extended_id, uri, description, ser-
vice_id, **kwargs)

Class that represents a Music Service Play List.

uri
Return the URI.

class soco.ms_data_structures.MSArtistTracklist(title, item_id, extended_id, uri, descrip-
tion, service_id, **kwargs)

Class that represents a Music Service Artist Track List.

uri
Return the URI.

class soco.ms_data_structures.MSArtist(title, item_id, extended_id, service_id, **kwargs)
Class that represents a Music Service Artist.

class soco.ms_data_structures.MSFavorites(title, item_id, extended_id, service_id,
**kwargs)

Class that represents a Music Service Favorite.

class soco.ms_data_structures.MSCollection(title, item_id, extended_id, service_id,
**kwargs)

Class that represents a Music Service Collection.

1.10.2.14 soco.music_library module

Access to the Music Library.

The Music Library is the collection of music stored on your local network. For access to third party music streaming
services, see the music_service module.

class soco.music_library.MusicLibrary(soco=None)
The Music Library.

Parameters soco (SoCo, optional) – A SoCo instance to query for music library information. If
None, or not supplied, a random SoCo instance will be used.

build_album_art_full_uri(url)
Ensure an Album Art URI is an absolute URI.

Parameters url (str) – the album art URI.

Returns An absolute URI.

Return type str

get_artists(*args, **kwargs)
Convenience method for get_music_library_information with
search_type='artists'. For details of other arguments, see that method.

get_album_artists(*args, **kwargs)
Convenience method for get_music_library_information with
search_type='album_artists'. For details of other arguments, see that method.

1.10. soco package 99

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

get_albums(*args, **kwargs)
Convenience method for get_music_library_information with search_type='albums'.
For details of other arguments, see that method.

get_genres(*args, **kwargs)
Convenience method for get_music_library_information with search_type='genres'.
For details of other arguments, see that method.

get_composers(*args, **kwargs)
Convenience method for get_music_library_information with
search_type='composers'. For details of other arguments, see that method.

get_tracks(*args, **kwargs)
Convenience method for get_music_library_information with search_type='tracks'.
For details of other arguments, see that method.

get_playlists(*args, **kwargs)
Convenience method for get_music_library_information with
search_type='playlists'. For details of other arguments, see that method.

Note: The playlists that are referred to here are the playlists imported from the music library, they are not
the Sonos playlists.

get_sonos_favorites(*args, **kwargs)
Convenience method for get_music_library_information with
search_type='sonos_favorites'. For details of other arguments, see that method.

get_favorite_radio_stations(*args, **kwargs)
Convenience method for get_music_library_information with
search_type='radio_stations'. For details of other arguments, see that method.

get_favorite_radio_shows(*args, **kwargs)
Convenience method for get_music_library_information with
search_type='radio_stations'. For details of other arguments, see that method.

get_music_library_information(search_type, start=0, max_items=100,
full_album_art_uri=False, search_term=None, subcat-
egories=None, complete_result=False)

Retrieve music information objects from the music library.

This method is the main method to get music information items, like e.g. tracks, albums etc., from the
music library with. It can be used in a few different ways:

The search_term argument performs a fuzzy search on that string in the results, so e.g calling:

get_music_library_information('artists', search_term='Metallica')

will perform a fuzzy search for the term ‘Metallica’ among all the artists.

Using the subcategories argument, will jump directly into that subcategory of the search and return
results from there. So. e.g knowing that among the artist is one called ‘Metallica’, calling:

get_music_library_information('artists',
subcategories=['Metallica'])

will jump directly into the ‘Metallica’ sub category and return the albums associated with Metallica and:

get_music_library_information('artists',
subcategories=['Metallica', 'Black'])

100 Chapter 1. Contents

soco Documentation, Release 0.27.0

will return the tracks of the album ‘Black’ by the artist ‘Metallica’. The order of sub category types is:
Genres->Artists->Albums->Tracks. It is also possible to combine the two, to perform a fuzzy search in a
sub category.

The start, max_items and complete_result arguments all have to do with paging of the results.
By default the searches are always paged, because there is a limit to how many items we can get at a time.
This paging is exposed to the user with the start and max_items arguments. So calling:

get_music_library_information('artists', start=0, max_items=100)
get_music_library_information('artists', start=100, max_items=100)

will get the first and next 100 items, respectively. It is also possible to ask for all the elements at once:

get_music_library_information('artists', complete_result=True)

This will perform the paging internally and simply return all the items.

Parameters

• search_type (str) – The kind of information to retrieve. Can be one
of: 'artists', 'album_artists', 'albums', 'genres', 'composers',
'tracks', 'share', 'sonos_playlists', or 'playlists', where playlists
are the imported playlists from the music library.

• start (int, optional) – starting number of returned matches (zero based). Default
0.

• max_items (int, optional) – Maximum number of returned matches. Default 100.

• full_album_art_uri (bool) – whether the album art URI should be absolute (i.e.
including the IP address). Default False.

• search_term (str, optional) – a string that will be used to perform a fuzzy
search among the search results. If used in combination with subcategories, the fuzzy
search will be performed in the subcategory.

• subcategories (str, optional) – A list of strings that indicate one or more sub-
categories to dive into.

• complete_result (bool) – if True, will disable paging (ignore start and
max_items) and return all results for the search.

Warning: Getting e.g. all the tracks in a large collection might take some time.

Returns an instance of SearchResult.

Return type SearchResult

Note:

• The maximum numer of results may be restricted by the unit, presumably due to transfer size consid-
eration, so check the returned number against that requested.

• The playlists that are returned with the 'playlists' search, are the playlists imported from the
music library, they are not the Sonos playlists.

Raises SoCoException upon errors.

1.10. soco package 101

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True

soco Documentation, Release 0.27.0

browse(ml_item=None, start=0, max_items=100, full_album_art_uri=False, search_term=None, sub-
categories=None)

Browse (get sub-elements from) a music library item.

Parameters

• ml_item (DidlItem) – the item to browse, if left out or None, items at the root level
will be searched.

• start (int) – the starting index of the results.

• max_items (int) – the maximum number of items to return.

• full_album_art_uri (bool) – whether the album art URI should be fully qualified
with the relevant IP address.

• search_term (str) – A string that will be used to perform a fuzzy search among
the search results. If used in combination with subcategories, the fuzzy search will be
performed on the subcategory. Note: Searching will not work if ml_item is None.

• subcategories (list) – A list of strings that indicate one or more subcategories to
descend into. Note: Providing sub categories will not work if ml_item is None.

Returns A SearchResult instance.

Raises

• AttributeError – if ml_item has no item_id attribute.

• SoCoUPnPException – with error_code='701' if the item cannot be browsed.

browse_by_idstring(search_type, idstring, start=0, max_items=100, full_album_art_uri=False)
Browse (get sub-elements from) a given music library item, specified by a string.

Parameters

• search_type (str) – The kind of information to retrieve. Can be one
of: 'artists', 'album_artists', 'albums', 'genres', 'composers',
'tracks', 'share', 'sonos_playlists', and 'playlists', where playlists
are the imported file based playlists from the music library.

• idstring (str) – a term to search for.

• start (int) – starting number of returned matches. Default 0.

• max_items (int) – Maximum number of returned matches. Default 100.

• full_album_art_uri (bool) – whether the album art URI should be absolute (i.e.
including the IP address). Default False.

Returns a SearchResult instance.

Return type SearchResult

Note: The maximum numer of results may be restricted by the unit, presumably due to transfer size
consideration, so check the returned number against that requested.

library_updating
whether the music library is in the process of being updated.

Type bool

start_library_update(album_artist_display_option=”)
Start an update of the music library.

102 Chapter 1. Contents

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

soco Documentation, Release 0.27.0

Parameters album_artist_display_option (str) – a value for the album artist com-
pilation setting (see album_artist_display_option).

search_track(artist, album=None, track=None, full_album_art_uri=False)
Search for an artist, an artist’s albums, or specific track.

Parameters

• artist (str) – an artist’s name.

• album (str, optional) – an album name. Default None.

• track (str, optional) – a track name. Default None.

• full_album_art_uri (bool) – whether the album art URI should be absolute (i.e.
including the IP address). Default False.

Returns A SearchResult instance.

get_albums_for_artist(artist, full_album_art_uri=False)
Get an artist’s albums.

Parameters

• artist (str) – an artist’s name.

• full_album_art_uri – whether the album art URI should be absolute (i.e. including
the IP address). Default False.

Returns A SearchResult instance.

get_tracks_for_album(artist, album, full_album_art_uri=False)
Get the tracks of an artist’s album.

Parameters

• artist (str) – an artist’s name.

• album (str) – an album name.

• full_album_art_uri – whether the album art URI should be absolute (i.e. including
the IP address). Default False.

Returns A SearchResult instance.

album_artist_display_option
The current value of the album artist compilation setting.

Possible values are:

• 'WMP' - use Album Artists

• 'ITUNES' - use iTunes® Compilations

• 'NONE' - do not group compilations

See also:

The Sonos FAQ on compilation albums.

To change the current setting, call start_library_update and pass the new setting.

Type str

list_library_shares()
Return a list of the music library shares.

1.10. soco package 103

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#False
https://sonos.custhelp.com/app/answers/detail/a_id/3056/kw/artist%20compilation
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

Returns The music library shares, which are strings of the form '//hostname_or_IP/
share_path'.

Return type list

delete_library_share(share_name)
Delete a music library share.

Parameters share_name (str) – the name of the share to be deleted, which should be of the
form '//hostname_or_IP/share_path'.

Raises SoCoUPnPException

1.10.2.15 soco.services module

Classes representing Sonos UPnP services.

>>> import soco
>>> device = soco.SoCo('192.168.1.102')
>>> print(RenderingControl(device).GetMute([('InstanceID', 0),
... ('Channel', 'Master')]))
{'CurrentMute': '0'}
>>> r = ContentDirectory(device).Browse([
... ('ObjectID', 'Q:0'),
... ('BrowseFlag', 'BrowseDirectChildren'),
... ('Filter', '*'),
... ('StartingIndex', '0'),
... ('RequestedCount', '100'),
... ('SortCriteria', '')
...])
>>> print(r['Result'])
<?xml version="1.0" ?><DIDL-Lite xmlns="urn:schemas-upnp-org:metadata ...
>>> for action, in_args, out_args in AlarmClock(device).iter_actions():
... print(action, in_args, out_args)
...
SetFormat [Argument(name='DesiredTimeFormat', vartype='string'), Argument(
name='DesiredDateFormat', vartype='string')] []
GetFormat [] [Argument(name='CurrentTimeFormat', vartype='string'),
Argument(name='CurrentDateFormat', vartype='string')] ...

class soco.services.Action
A UPnP Action and its arguments.

Create new instance of ActionBase(name, in_args, out_args)

class soco.services.Argument
A UPnP Argument and its type.

Create new instance of ArgumentBase(name, vartype)

class soco.services.Vartype
An argument type with default value and range.

Create new instance of VartypeBase(datatype, default, list, range)

class soco.services.Service(soco)
A class representing a UPnP service.

This is the base class for all Sonos Service classes. This class has a dynamic method dispatcher. Calls to
methods which are not explicitly defined here are dispatched automatically to the service action with the same
name.

104 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

Parameters

• soco (SoCo) – A SoCo instance to which the UPnP Actions will be

• sent –

soco = None
The SoCo instance to which UPnP Actions are sent

Type SoCo

service_type = None
The UPnP service type.

Type str

version = None
The UPnP service version.

Type str

base_url = None
The base URL for sending UPnP Actions.

Type str

control_url = None
The UPnP Control URL.

Type str

scpd_url = None
The service control protocol description URL.

Type str

event_subscription_url = None
The service eventing subscription URL.

Type str

cache = None
A cache for storing the result of network calls. By default, this is a TimedCachewith a default timeout=0.

static wrap_arguments(args=None)
Wrap a list of tuples in xml ready to pass into a SOAP request.

Parameters args (list) – a list of (name, value) tuples specifying the name of each argu-
ment and its value, eg [('InstanceID', 0), ('Speed', 1)]. The value can be a
string or something with a string representation. The arguments are escaped and wrapped in
<name> and <value> tags.

Example

>>> from soco import SoCo
>>> device = SoCo('192.168.1.101')
>>> s = Service(device)
>>> print(s.wrap_arguments([('InstanceID', 0), ('Speed', 1)]))
<InstanceID>0</InstanceID><Speed>1</Speed>'

static unwrap_arguments(xml_response)
Extract arguments and their values from a SOAP response.

1.10. soco package 105

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

soco Documentation, Release 0.27.0

Parameters xml_response (str) – SOAP/xml response text (unicode, not utf-8).

Returns a dict of {argument_name: value} items.

Return type dict

compose_args(action_name, in_argdict)
Compose the argument list from an argument dictionary, with respect for default values.

Parameters

• action_name (str) – The name of the action to be performed.

• in_argdict (dict) – Arguments as a dict, e.g. {'InstanceID': 0, 'Speed':
1}. The values can be a string or something with a string representation.

Returns a list of (name, value) tuples.

Return type list

Raises

• AttributeError – If this service does not support the action.

• ValueError – If the argument lists do not match the action signature.

build_command(action, args=None)
Build a SOAP request.

Parameters

• action (str) – the name of an action (a string as specified in the service description
XML file) to be sent.

• args (list, optional) – Relevant arguments as a list of (name, value) tuples.

Returns a tuple containing the POST headers (as a dict) and a string containing the relevant
SOAP body. Does not set content-length, or host headers, which are completed upon sending.

Return type tuple

send_command(action, args=None, cache=None, cache_timeout=None, **kwargs)
Send a command to a Sonos device.

Parameters

• action (str) – the name of an action (a string as specified in the service description
XML file) to be sent.

• args (list, optional) – Relevant arguments as a list of (name, value) tuples, as an
alternative to kwargs.

• cache (Cache) – A cache is operated so that the result will be stored for up to
cache_timeout seconds, and a subsequent call with the same arguments within that
period will be returned from the cache, saving a further network call. The cache may be
invalidated or even primed from another thread (for example if a UPnP event is received to
indicate that the state of the Sonos device has changed). If cache_timeout is missing
or None, the cache will use a default value (which may be 0 - see cache). By default, the
cache identified by the service’s cache attribute will be used, but a different cache object
may be specified in the cache parameter.

• kwargs – Relevant arguments for the command.

Returns a dict of {argument_name, value} items.

Return type dict

106 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict

soco Documentation, Release 0.27.0

Raises

• AttributeError – If this service does not support the action.

• ValueError – If the argument lists do not match the action signature.

• SoCoUPnPException – if a SOAP error occurs.

• UnknownSoCoException – if an unknown UPnP error occurs.

• requests.exceptions.HTTPError – if an http error occurs.

handle_upnp_error(xml_error)
Disect a UPnP error, and raise an appropriate exception.

Parameters xml_error (str) – a unicode string containing the body of the UPnP/SOAP
Fault response. Raises an exception containing the error code.

subscribe(requested_timeout=None, auto_renew=False, event_queue=None, strict=True)
Subscribe to the service’s events.

Parameters

• requested_timeout (int, optional) – If requested_timeout is provided, a sub-
scription valid for that number of seconds will be requested, but not guaranteed. Check
timeout on return to find out what period of validity is actually allocated.

• auto_renew (bool) – If auto_renew is True, the subscription will automatically be
renewed just before it expires, if possible. Default is False.

• event_queue (Queue) – a thread-safe queue object on which received events will be
put. If not specified, a (Queue) will be created and used.

• strict (bool, optional) – If True and an Exception occurs during execution, the
Exception will be raised or, if False, the Exception will be logged and the Subscription
instance will be returned. Default True.

Returns an instance of Subscription, representing the new subscription. If con-
fig.EVENTS_MODULE has been set to refer to events_twisted, a deferred will be
returned with the Subscription as its result and deferred.subscription will be set to refer to
the Subscription.

Return type Subscription

To unsubscribe, call the unsubscribe() method on the returned object.

actions
The service’s actions with their arguments.

Returns A list of Action namedtuples, consisting of action_name (str), in_args (list of Argument
namedtuples, consisting of name and argtype), and out_args (ditto).

Return type list(Action)

The return value looks like this:

[
Action(

name='GetMute',
in_args=[

Argument(name='InstanceID', ...),
Argument(

name='Channel',
vartype='string',

(continues on next page)

1.10. soco package 107

https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True

soco Documentation, Release 0.27.0

(continued from previous page)

list=['Master', 'LF', 'RF', 'SpeakerOnly'],
range=None

)
],
out_args=[

Argument(name='CurrentMute, ...)
]

)
Action(...)

]

Its string representation will look like this:

GetMute(InstanceID: ui4, Channel: [Master, LF, RF, SpeakerOnly])

-> {CurrentMute: boolean}

iter_actions()
Yield the service’s actions with their arguments.

Yields Action – the next action.

Each action is an Action namedtuple, consisting of action_name (a string), in_args (a list of Argument
namedtuples consisting of name and argtype), and out_args (ditto), eg:

Action(
name='SetFormat',
in_args=[

Argument(name='DesiredTimeFormat', vartype=<Vartype>),
Argument(name='DesiredDateFormat', vartype=<Vartype>)],

out_args=[]
)

event_vars
The service’s eventable variables.

Returns A list of (variable name, data type) tuples.

Return type list(tuple)

iter_event_vars()
Yield the services eventable variables.

Yields tuple – a tuple of (variable name, data type).

class soco.services.AlarmClock(soco)
Sonos alarm service, for setting and getting time and alarms.

class soco.services.MusicServices(soco)
Sonos music services service, for functions related to 3rd party music services.

Parameters

• soco (SoCo) – A SoCo instance to which the UPnP Actions will be

• sent –

class soco.services.AudioIn(soco)
Sonos audio in service, for functions related to RCA audio input.

Parameters

108 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

soco Documentation, Release 0.27.0

• soco (SoCo) – A SoCo instance to which the UPnP Actions will be

• sent –

class soco.services.DeviceProperties(soco)
Sonos device properties service, for functions relating to zones, LED state, stereo pairs etc.

Parameters

• soco (SoCo) – A SoCo instance to which the UPnP Actions will be

• sent –

class soco.services.SystemProperties(soco)
Sonos system properties service, for functions relating to authentication etc.

Parameters

• soco (SoCo) – A SoCo instance to which the UPnP Actions will be

• sent –

class soco.services.ZoneGroupTopology(soco)
Sonos zone group topology service, for functions relating to network topology, diagnostics and updates.

Parameters

• soco (SoCo) – A SoCo instance to which the UPnP Actions will be

• sent –

class soco.services.GroupManagement(soco)
Sonos group management service, for services relating to groups.

Parameters

• soco (SoCo) – A SoCo instance to which the UPnP Actions will be

• sent –

class soco.services.QPlay(soco)
Sonos Tencent QPlay service (a Chinese music service)

Parameters

• soco (SoCo) – A SoCo instance to which the UPnP Actions will be

• sent –

class soco.services.ContentDirectory(soco)
UPnP standard Content Directory service, for functions relating to browsing, searching and listing available
music.

class soco.services.MS_ConnectionManager(soco)
UPnP standard connection manager service for the media server.

class soco.services.RenderingControl(soco)
UPnP standard rendering control service, for functions relating to playback rendering, eg bass, treble, volume
and EQ.

class soco.services.MR_ConnectionManager(soco)
UPnP standard connection manager service for the media renderer.

class soco.services.AVTransport(soco)
UPnP standard AV Transport service, for functions relating to transport management, eg play, stop, seek,
playlists etc.

1.10. soco package 109

soco Documentation, Release 0.27.0

class soco.services.Queue(soco)
Sonos queue service, for functions relating to queue management, saving queues etc.

class soco.services.GroupRenderingControl(soco)
Sonos group rendering control service, for functions relating to group volume etc.

1.10.2.16 soco.snapshot module

Functionality to support saving and restoring the current Sonos state.

This is useful for scenarios such as when you want to switch to radio or an announcement and then back again to what
was playing previously.

Warning: Sonos has introduced control via Amazon Alexa. A new cloud queue is created and at present there
appears no way to restart this queue from snapshot. Currently if a cloud queue was playing it will not restart.

Warning: This class is designed to be created used and destroyed. It is not designed to be reused or long lived.
The init sets up defaults for one use.

class soco.snapshot.Snapshot(device, snapshot_queue=False)
A snapshot of the current state.

Note: This does not change anything to do with the configuration such as which group the speaker is in, just
settings that impact what is playing, or how it is played.

List of sources that may be playing using root of media_uri:

x-rincon-queue: playing from Queue
x-sonosapi-stream: playing a stream (eg radio)
x-file-cifs: playing file
x-rincon: slave zone (only change volume etc. rest from coordinator)

Parameters

• device (SoCo) – The device to snapshot

• snapshot_queue (bool) – Whether the queue should be snapshotted. Defaults to
False.

Warning: It is strongly advised that you do not snapshot the queue unless you really need to as it takes a
very long time to restore large queues as it is done one track at a time.

snapshot()
Record and store the current state of a device.

Returns True if the device is a coordinator, False otherwise. Useful for determining whether
playing an alert on a device will ungroup it.

110 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

soco Documentation, Release 0.27.0

Return type bool

restore(fade=False)
Restore the state of a device to that which was previously saved.

For coordinator devices restore everything. For slave devices only restore volume etc., not transport info
(transport info comes from the slave’s coordinator).

Parameters fade (bool) – Whether volume should be faded up on restore.

1.10.2.17 soco.soap module

Classes for handling SoCo’s basic SOAP requirements.

This module does not handle anything like the full SOAP Specification , but is enough for SoCo’s needs. Sonos uses
SOAP for UPnP communications, and for communication with third party music services.

exception soco.soap.SoapFault(faultcode, faultstring, detail=None)
An exception encapsulating a SOAP Fault.

Parameters

• faultcode (str) – The SOAP faultcode.

• faultstring (str) – The SOAP faultstring.

• detail (Element) – The SOAP fault detail, as an ElementTree Element. Defaults to
None.

class soco.soap.SoapMessage(endpoint, method, parameters=None, http_headers=None,
soap_action=None, soap_header=None, namespace=None, **re-
quest_args)

A SOAP Message representing a remote procedure call.

Uses the Requests library for communication with a SOAP server.

Parameters

• endpoint (str) – The SOAP endpoint URL for this client.

• method (str) – The name of the method to call.

• parameters (list) – A list of (name, value) tuples containing the parameters to pass to
the method. Default None.

• http_headers (dict) – A dict in the form {'Header': 'Value,..} containing
http headers to use for the http request. Content-type and SOAPACTION headers will
be created automatically, so do not include them here. Use this, for example, to set a user-
agent.

• soap_action (str) – The value of the SOAPACTION header. Default ‘None‘.

• soap_header (str) – A string representation of the XML to be used for the SOAP
Header. Default None.

• namespace (str) – The namespace URI to use for the method and parameters. None,
by default.

• **request_args – Other keyword parameters will be passed to the Requests request
which is used to handle the http communication. For example, a timeout value can be set.

prepare_headers(http_headers, soap_action)
Prepare the http headers for sending.

1.10. soco package 111

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
http://www.w3.org/TR/soap/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element
https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element
https://docs.python.org/3/library/constants.html#None
http://www.python-requests.org/en/latest/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

soco Documentation, Release 0.27.0

Add the SOAPACTION header to the others.

Parameters

• http_headers (dict) – A dict in the form {'Header': 'Value,..} contain-
ing http headers to use for the http request.

• soap_action (str) – The value of the SOAPACTION header.

Returns headers including the SOAPACTION header.

Return type dict

prepare_soap_header(soap_header)
Prepare the SOAP header for sending.

Wraps the soap header in appropriate tags.

Parameters soap_header (str) – A string representation of the XML to be used for the
SOAP Header

Returns The soap header wrapped in appropriate tags.

Return type str

prepare_soap_body(method, parameters, namespace)
Prepare the SOAP message body for sending.

Parameters

• method (str) – The name of the method to call.

• parameters (list) – A list of (name, value) tuples containing the parameters to pass
to the method.

• namespace (str) – The XML namespace to use for the method.

Returns A properly formatted SOAP Body.

Return type str

prepare_soap_envelope(prepared_soap_header, prepared_soap_body)
Prepare the SOAP Envelope for sending.

Parameters

• prepared_soap_header (str) – A SOAP Header prepared by
prepare_soap_header

• prepared_soap_body (str) – A SOAP Body prepared by prepare_soap_body

Returns A prepared SOAP Envelope

Return type str

prepare()
Prepare the SOAP message for sending to the server.

call()
Call the SOAP method on the server.

Returns the decapusulated SOAP response from the server, still encoded as utf-8.

Return type str

Raises

• SoapFault – if a SOAP error occurs.

112 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

• HTTPError – if an http error occurs.

• xml.etree.ElementTree.ParseError – If the response cannot be parsed as
XML

1.10.2.18 soco.utils module

This class contains utility functions used internally by SoCo.

soco.utils.really_unicode(in_string)
Make a string unicode. Really.

Ensure in_string is returned as unicode through a series of progressively relaxed decodings.

Parameters in_string (str) – The string to convert.

Returns Unicode.

Return type str

Raises ValueError

soco.utils.really_utf8(in_string)
Encode a string with utf-8. Really.

First decode in_string via really_unicode to ensure it can successfully be encoded as utf-
8. This is required since just calling encode on a string will often cause Python 2 to perform a
coerced strict auto-decode as ascii first and will result in a UnicodeDecodeError being raised.
After really_unicode returns a safe unicode string, encode as utf-8 and return the utf-8 encoded
string.

Parameters in_string – The string to convert.

soco.utils.camel_to_underscore(string)
Convert camelcase to lowercase and underscore.

Recipe from http://stackoverflow.com/a/1176023

Parameters string (str) – The string to convert.

Returns The converted string.

Return type str

soco.utils.prettify(unicode_text)
Return a pretty-printed version of a unicode XML string.

Useful for debugging.

Parameters unicode_text (str) – A text representation of XML (unicode, not utf-8).

Returns A pretty-printed version of the input.

Return type str

soco.utils.show_xml(xml)
Pretty print an ElementTree XML object.

Parameters xml (ElementTree) – The ElementTree to pretty print

Note: This is used a convenience function used during development. It is not used anywhere in the main code
base.

1.10. soco package 113

https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.ParseError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#UnicodeDecodeError
http://stackoverflow.com/a/1176023
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.ElementTree
https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.ElementTree
https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.ElementTree

soco Documentation, Release 0.27.0

class soco.utils.deprecated(since, alternative=None, will_be_removed_in=None, alterna-
tive_not_referable=False)

A decorator for marking deprecated objects.

Used internally by SoCo to cause a warning to be issued when the object is used, and marks the object as
deprecated in the Sphinx documentation.

Parameters

• since (str) – The version in which the object is deprecated.

• alternative (str, optional) – The name of an alternative object to use

• will_be_removed_in (str, optional) – The version in which the object is likely
to be removed.

• alternative_not_referable (bool) – (optional) Indicate that alternative
cannot be used as a sphinx reference

Example

@deprecated(since="0.7", alternative="new_function")
def old_function(args):

pass

soco.utils.url_escape_path(path)
Escape a string value for a URL request path.

Parameters str – The path to escape

Returns The escaped path

Return type str

>>> url_escape_path("Foo, bar & baz / the hackers")
u'Foo%2C%20bar%20%26%20baz%20%2F%20the%20hackers'

soco.utils.first_cap(string)
Return upper cased first character

soco.utils.string_has_uri_components(string)
Returns True if the string contains common URI components.

1.10.2.19 soco.xml module

This class contains XML related utility functions.

soco.xml.NAMESPACES = {'': 'urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/', 'dc': 'http://purl.org/dc/elements/1.1/', 'ms': 'http://www.sonos.com/Services/1.1', 'r': 'urn:schemas-rinconnetworks-com:metadata-1-0/', 'upnp': 'urn:schemas-upnp-org:metadata-1-0/upnp/'}
Commonly used namespaces, and abbreviations, used by ns_tag.

soco.xml.ns_tag(ns_id, tag)
Return a namespace/tag item.

Parameters

• ns_id (str) – A namespace id, eg "dc" (see NAMESPACES)

• tag (str) – An XML tag, eg "author"

Returns A fully qualified tag.

Return type str

114 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

soco Documentation, Release 0.27.0

The ns_id is translated to a full name space via the NAMESPACES constant:

>>> xml.ns_tag('dc','author')
'{http://purl.org/dc/elements/1.1/}author'

1.11 SoCo releases

toctree contains reference to nonexisting document ‘releases/0.27’

1.11.1 SoCo 0.26 Release Notes

SoCo 0.26.0 (Released on 2022-01-24), contains new features as well as internal improvements.

In particular this release reintroduces experimental support for music services. Testing and issue reporting would be
appreciated.

Please see the GitHub release page for further details: https://github.com/SoCo/SoCo/releases/tag/v0.26.0

1.11.2 SoCo 0.25 Release Notes

SoCo 0.25.0 (Released on 2021-12-03), contains new features as well as internal improvements.

Please see the GitHub release for further details: https://github.com/SoCo/SoCo/releases/tag/v0.25.0

1.11.3 SoCo 0.24 Release Notes

SoCo 0.24.0 (Released on 2021-09-01), contains new features as well as internal improvements.

Please see the GitHub release for further details: https://github.com/SoCo/SoCo/releases/tag/v0.24.0

1.11.4 SoCo 0.23 release notes

SoCo 0.23 (Released on 2021-07-16), contains a number of new features as well as internal improvements.

1.11.4.1 New Features and Improvements

• Add a contactable() function to filter out devices that are not reachable.

• Add end_direct_control_session() method to stop remote control sessions (e.g., Spotify Connect).

• Add get_current_media_info() method, useful for determining details of radio streams.

• Add plugin for playback of Spotify and Tidal ShareLinks (experimental).

• Restore compatibility for Sonos S1 systems running firmware versions earlier than 10.1.

1.11.4.2 Developer/Code Improvements

• Logging severity has been adjusted in some areas to reduce the volume of logging output.

1.11. SoCo releases 115

https://github.com/SoCo/SoCo/releases/tag/v0.26.0
https://github.com/SoCo/SoCo/releases/tag/v0.25.0
https://github.com/SoCo/SoCo/releases/tag/v0.24.0

soco Documentation, Release 0.27.0

1.11.4.3 Complete list of significant changes since v0.22

See: https://github.com/SoCo/SoCo/milestone/19?closed=1

1.11.5 SoCo 0.22 release notes

SoCo 0.22 (Released on 2021-04-17), contains a number of new features as well as internal improvements.

1.11.5.1 New Features and Improvements

• Add an available_actions property to determine what actions are currently permitted on a player.

• Add the ability to remove alarms from the system by Alarm ID.

• Add shuffle and repeat as directly gettable/settable properties of a player.

• Add the ability to specify a track number when using seek.

• Add events handling using asyncio, as an alternative to the standard and Twisted events approaches.

1.11.5.2 Developer/Code Improvements

• We’ve made a broad set of changes to remove legacy code related to Python 2 compatibility.

1.11.5.3 Complete list of significant changes since v0.21

See: https://github.com/SoCo/SoCo/milestone/18?closed=1

1.11.6 SoCo 0.21 release notes

SoCo 0.21 (Released on 2021-01-17), contains significant improvements to the speaker discovery process, which
should address most of the common problems that are encountered.

Multi-household Sonos systems can now be discovered and controlled.

The AudioIn service has been added, providing access to Line In operations and events.

A number of additional miscellaneous speaker state controls have been provided, for speaker buttons, fixed volume
output, and Trueplay. The battery status of Sonos Move speakers can also now be obtained. The music_source
property on SoCo objects provides a convenient way to determine what type of source is being played by a speaker.

SoCo 0.21 is now fully Python 3.9 compatible, requires Python 3.5+, and is no longer compatible with Python 2.x.

1.11.6.1 New Features and Improvements

• Add support for network scan discovery, including allowing multi-household systems to be discovered: pull
requests #733, #755, and #770.

• Add the AudioIn service for access to Line In operations and events: PR #777.

• Add the ability to inspect and set Fixed Volume output: PR #773.

• Add the ability to inspect and set whether speaker buttons are enabled: PR #774.

• Add the ability to inspect and set Trueplay enablement: PR #775.

116 Chapter 1. Contents

https://github.com/SoCo/SoCo/milestone/19?closed=1
https://github.com/SoCo/SoCo/milestone/18?closed=1
https://github.com/SoCo/SoCo/pull/733
https://github.com/SoCo/SoCo/pull/755
https://github.com/SoCo/SoCo/pull/770
https://github.com/SoCo/SoCo/pull/777
https://github.com/SoCo/SoCo/pull/773
https://github.com/SoCo/SoCo/pull/774
https://github.com/SoCo/SoCo/pull/775

soco Documentation, Release 0.27.0

• Add the ability to determine the battery state of Sonos Move speakers: PR #756.

1.11.6.2 Bug Fixes

• Improve zone group state caching to accommodate multi-household systems: PR #656. (Note: possible break-
ing change: if you’ve previously been setting the soco.core.zone_group_state_shared_cache.
enabled property, this property is no longer global but is instead now a private property of SoCo instances.)

• When restoring snapshots, do not try to restore bass/treble/loudness on devices with fixed volume enabled: PR
#772.

• Ensure that all relevant NICs and IP addresses are included in multicast speaker discovery: PR #767.

1.11.6.3 Developer Improvements

• Numerous fixes to allow the documentation to build cleanly: PR #753.

• Full Python 3.9 compatibility, including updated check jobs: PRs #745 and #751.

• Code changes to allow Pylint and Black to be updated to their most recent versions: PRs #748 and #749.

1.11.6.4 List of Changes Associated with the 0.21 Milestone

See: https://github.com/SoCo/SoCo/milestone/17?closed=1

1.11.7 SoCo 0.20 release notes

SoCo 0.20 is the latest increment to the SoCo module. Among the additions this time are support for adding stereo
pairs, proper categorization of Sonos Amp as a playbar to add proper support for ‘night sound’ and ‘speech enhance-
ment’ and finally a fix for a long running issue where vendor extended DIDL-Lite classes would cause events to crash
without specific code added for each one. See the full list of additions and bugfixes below.

SoCo (Sonos Controller) is a Python package that allows you to programmatically control Sonos speakers.

1.11.7.1 New Features and Improvements

• Add support for creating and separating stereo pairs of speakers. Note: works with dissimilar Sonos speakers if
required. Pull request #704.

• Add support for autogenerating vendor extended DIDL-Lite classes. Pull request #713. This should fix all the
problems where SoCo would crash if some vendor specific data type is unknown.

• Categorize Sonos Amp as a playbar in order to provide support for ‘night sound’ and ‘speech enhancement’.
Pull request #721

• If port 1400 is in use, the next available 100 ports will be tried. Pull request #724.

1.11.7.2 Bugfixes

• Fix bug where data_structures_upgrade would fail on items that has no uri. Issue #702.

• Process share browsing correctly. Issue #717. Credit to @Sonosy for the fix.

1.11. SoCo releases 117

https://github.com/SoCo/SoCo/pull/756
https://github.com/SoCo/SoCo/pull/656
https://github.com/SoCo/SoCo/pull/772
https://github.com/SoCo/SoCo/pull/767
https://github.com/SoCo/SoCo/pull/753
https://github.com/SoCo/SoCo/pull/745
https://github.com/SoCo/SoCo/pull/751
https://github.com/SoCo/SoCo/pull/748
https://github.com/SoCo/SoCo/pull/749
https://github.com/SoCo/SoCo/milestone/17?closed=1
http://python-soco.com/
https://github.com/SoCo/SoCo/pull/704
https://github.com/SoCo/SoCo/pull/713
https://github.com/SoCo/SoCo/pull/721
https://github.com/SoCo/SoCo/pull/724
https://github.com/SoCo/SoCo/issues/702
https://github.com/SoCo/SoCo/issues/717

soco Documentation, Release 0.27.0

1.11.7.3 Developer improvements

• Format all soco main, test and example code with the black code formatter (https://github.com/psf/black) and
make it mandatory going forward including a TravisCI check. Pull request #706.

• Improve test_remove_playlist_bad_id() to handle the case of no existing playlists. Pull request
#726, fixes issue #725.

1.11.8 SoCo 0.19 release notes

SoCo 0.19 is the latest increment to the SoCo module. Among the additions this time are added methods for library
share handling, new methods for relative and group volume handling and a new DIDL-Lite class used for certain
podcasts. See the full list of additions and bugfixes below.

SoCo (Sonos Controller) is a Python package that allows you to programmatically control Sonos speakers.

1.11.8.1 New Features and Improvements

• Added class DidlRecentShow to the data_structures module to implement the added object.
item.audioItem.musicTrack.recentShow DIDL-Lite object type. Used for podcasts etc. Pull re-
quest #677.

• Add support for Python 3.8, pull reques #679

• Add methods list_library_shares() and delete_library_share() to MusicLibrary . Par-
tially addresses issue #678.

• Add a balance property to the SoCo class, allowing get/set of speaker balance, pull request #693. Addresses
issue #692. Credit to @tephlon for the idea and the majority of the implementation.

• Add the set_relative_volume() method to the SoCo class, pull request #687

• Add unit test for soco.music_library.MusicLibrary.delete_library_share() method, pull
request #694

• Add deprecation warning concerning the removal of Python 2.7 support, pull request #697

• Add group volume operations, pull request #688

1.11.8.2 Bugfixes

• Fixed broken link in loudness docstring, issue #671

• In soco.events, fixed bug affecting some users in code to determine system’s own IP address. Some systems
requires a valid port to be used (not port 0), so we use config.EVENT_LISTENER_PORT. Pull request #680.

• Copy metadata from DidlItem to MusicServiceItem in get_queue() and events. Pull request #589.
Closes issues #535, #547 and #552.

• Fixed a bug (avoid trying to iterate a None) in the discovery module, commit c8e4a24

1.11.9 SoCo 0.18 release notes

SoCo 0.18 adds lots of small improvements to the events functionality plus a major addition in the form of allowing
choice of how the event listener is implemented. Besides that there is a logging improvement. Details are below.

SoCo (Sonos Controller) is a Python package that allows you to programmatically control Sonos speakers.

118 Chapter 1. Contents

https://github.com/psf/black
https://github.com/SoCo/SoCo/pull/706
https://github.com/SoCo/SoCo/pull/726
https://github.com/SoCo/SoCo/issues/725
http://python-soco.com/
https://github.com/SoCo/SoCo/pull/677
https://github.com/SoCo/SoCo/pull/679
https://github.com/SoCo/SoCo/issues/678
https://github.com/SoCo/SoCo/pull/693
https://github.com/SoCo/SoCo/issues/692
https://github.com/SoCo/SoCo/pull/687
https://github.com/SoCo/SoCo/pull/694
https://github.com/SoCo/SoCo/pull/697
https://github.com/SoCo/SoCo/pull/688
https://github.com/SoCo/SoCo/issues/671
https://github.com/SoCo/SoCo/pull/680
https://github.com/SoCo/SoCo/pull/589
https://github.com/SoCo/SoCo/issues/535
https://github.com/SoCo/SoCo/issues/547
https://github.com/SoCo/SoCo/issues/552
https://github.com/SoCo/SoCo/commit/c8e4a246addbc8891752cf65a4933a9db6ff1022
http://python-soco.com/

soco Documentation, Release 0.27.0

1.11.9.1 New Features and Improvements

• Allow the user to choose how the event listener is implemented and a lot of other event code improvements as
outlined below. (Pull request #602).

– A major feature addition is to allow the user to choose how the event listener is implemented. The default
is for the event listener to use the requests library and run in a thread. This update allows the user to run
the event listener using the twisted.internet library, by setting the config.EVENTS_MODULE module to
point to the soco.events_twisted module. See the example in events_twisted.

– Stops the event listener when the last active subscription is unsubscribed.

– Raise soco.exceptions.SoCoException on an attempt to subscribe a subscription more than once
(use soco.events.Subscription.renew() instead).

– Allow an optional strict parameter for soco.events.Subscription.subscribe(), soco.
events.Subscription.renew() and soco.events.Subscription.unsubscribe(). If
set to False, Exceptions will be logged rather than raised. Default: True

– Upon autorenewal, call soco.events.Subscription.renew() with the strict flag set to False, so
that any Exception is logged, not raised. This is because there is no calling code to catch an Exception.

– Provide for calling code to set soco.events.Subscription.auto_renew_fail to refer to a
callback function. If an Exception occurs upon autorenewal, this callback will be called with the Exception
as the sole parameter.

– If an Exception occurs upon subscribe() or renew(), cancel the subscription, unless the Exception
was a SoCoException on subscribe(). For example, if an Exception occurs because the network went
down, the subscription will be canceled.

– Use a threading lock with subscribe(), renew() and unsubscribe(), because autorenewal oc-
curs from a thread.

• Add a simple soco.data_structures.DidlPlaylistContainerTracklist class to the soco.
data_structures module (Pull request #645). The class is used by Sonos when Sonos Speakers are con-
trolled by Spotify Connect. The absence of the class from the data_structures module causes errors. This fixes
the error message reported in pull request #639.

• Remove logging of UPnP failures (Pull request #640

1.11.10 SoCo 0.17 release notes

SoCo 0.17 adds a single new feature and updates SoCo to work on top of the API changes that Sonos introduced with
the 10.1 software update.

Warning: The changes to SoCo to accommodate the Sonos API changes as of version 10.1 are backwards
incompatible. This means that if SoCo is updated to version 0.17, then it will be necessary to update the Sonos
software to 10.1 at the same time.

SoCo (Sonos Controller) is a simple Python class that allows you to programmatically control Sonos speakers.

1.11.10.1 New Features and Improvements

• Add the is_soundbar property to the SoCo class to indicate whether or not the current instance represents
a Play:Bar, a Play:Base, or a Beam and, when appropriate, enable features like Night and Dialog mode. (Pull
request #637). (Fixes #633).

1.11. SoCo releases 119

https://github.com/SoCo/SoCo/pull/602
https://github.com/SoCo/SoCo/pull/645
https://github.com/SoCo/SoCo/pull/639
https://github.com/SoCo/SoCo/pull/640
http://python-soco.com/
https://github.com/SoCo/SoCo/pull/637
https://github.com/SoCo/SoCo/issues/633

soco Documentation, Release 0.27.0

1.11.10.2 Bugfixes

• Fix discovery which was broken as a consequence of API changes in Sonos software version 10.1. (Commit
f532cad)

• Fix parsing of favorites which was broken as a consequence of API changes in Sonos software version 10.1.
(Commit 58efcb6)

1.11.11 SoCo 0.16 release notes

SoCo 0.16 is a new version of the SoCo library. This release adds new features and fixes several bugs.

SoCo (Sonos Controller) is a simple Python class that allows you to programmatically control Sonos speakers.

1.11.11.1 New Features and Improvements

• Allow the user to configure the event listener IP address that is sent to the Sonos speakers. The default is to auto
detect, but it can now be overridden. This allows for more complex network configurations (e.g. using Docker
containers) to be supported. (#604)

• The play_uri method now accepts title arguments that need XML escaping. (#605)

• A harmless “Could not handle track info” warning has been removed. (#606)

• Let from_didl_string throw DIDLMetadataErrors, allowing them to be caught in the event handling
code. (#601)

• Added support for object.item.audioItem.audioBook (#618)

1.11.11.2 Bugfixes

• Fix DidlMusicAlbum inheriting fields from DidlAudioItem instead of DidlAlbum (#592)

1.11.12 SoCo 0.15 release notes

SoCo 0.15 is a new version of the SoCo library. This release adds new features and fixes several bugs.

SoCo (Sonos Controller) is a simple Python class that allows you to programmatically control Sonos speakers.

1.11.12.1 New Features and Improvements

• Add __enter__ and __exit__ methods to Subscription, for automatic unsubscription in a with-block
(#563)

• Add __enter__ and __exit__ methods to Snapshot, for automatic snapshot and restore in a with block
(#588)

• Handle default value / allowed value range in Service.iter_actions and format the resulting actions
(#573)

• Allow keyword arguments in Service commands (#573)

• Auto deploy new tagged releases to PyPI (#593)

• Documentation updates (#580)

120 Chapter 1. Contents

https://github.com/SoCo/SoCo/commit/f532cadb41179d3e030a6fc21bc32f7773070169
https://github.com/SoCo/SoCo/commit/58efcb691128583922477825c5801bc83d7fe95f
http://python-soco.com/
https://github.com/SoCo/SoCo/pull/604
https://github.com/SoCo/SoCo/pull/605
https://github.com/SoCo/SoCo/pull/606
https://github.com/SoCo/SoCo/pull/601
https://github.com/SoCo/SoCo/pull/618
https://github.com/SoCo/SoCo/pull/592
http://python-soco.com/
https://github.com/SoCo/SoCo/pull/563
https://github.com/SoCo/SoCo/pull/588
https://github.com/SoCo/SoCo/pull/573
https://github.com/SoCo/SoCo/pull/573
https://github.com/SoCo/SoCo/pull/593
https://github.com/SoCo/SoCo/pull/580

soco Documentation, Release 0.27.0

1.11.12.2 Bugfixes

• Prevent parsing exceptions during event handling from killing the exception thread. Instead, return a
DidlFault, which will reraise the exception when the user tries to use it (#567)

• Fixed the set returned by discover() being modified later (#582)

• Fixed regression in send_command (#577)

• Fixed regression due to removed deprecated methods (#596)

• Improved error handling with speakers not associated to a room (#555)

1.11.12.3 Backwards Compatability

• Dropped support for Python 3.3 #527 (#527)

• Removed the deprecated methods which were moved in 0.12 from core.py to music_library.py and
move the assoctiated tests (#542)

1.11.13 SoCo 0.14 release notes

SoCo 0.14 is a new version of the SoCo library. This release adds new features and fixes several bugs.

SoCo (Sonos Controller) is a simple Python class that allows you to programmatically control Sonos speakers.

1.11.13.1 New Features and Improvements

• Add support for Sonos favorites, which can now be browsed and played through the usual methods. (#478)

• Revised the play_local_files examples including a off-by-one bug fix, configuration as command line argument,
IP address auto detection and more robust Sonos player selection. (#570)

• Allow keyword arguments in Service commands (#573)

• Handle QueueID properly in event xml. (#546)

• Further documentation updates (#540, #569)

1.11.13.2 Bugfixes

• Small bugfix to stop an error where None would be returned by metadata.findtext. Instead, an empty
string is returned. (#539)

• Fix a race that could lead to events being missed shortly after a subscription was started. (#533)

• Don’t throw exceptions when parsing metadata with missing/empty tags, to fix event errors. (#467)

1.11.14 SoCo 0.13 release notes

SoCo 0.13 is a new version of the SoCo library. This release adds new features and fixes several bugs.

SoCo (Sonos Controller) is a simple Python class that allows you to programmatically control Sonos speakers.

1.11. SoCo releases 121

https://github.com/SoCo/SoCo/pull/567
https://github.com/SoCo/SoCo/pull/582
https://github.com/SoCo/SoCo/pull/577
https://github.com/SoCo/SoCo/pull/596
https://github.com/SoCo/SoCo/pull/555
https://github.com/SoCo/SoCo/pull/527
https://github.com/SoCo/SoCo/pull/542
http://python-soco.com/
https://github.com/SoCo/SoCo/pull/478
https://github.com/SoCo/SoCo/pull/570
https://github.com/SoCo/SoCo/pull/573
https://github.com/SoCo/SoCo/pull/546
https://github.com/SoCo/SoCo/pull/#540
https://github.com/SoCo/SoCo/pull/569
https://github.com/SoCo/SoCo/pull/539
https://github.com/SoCo/SoCo/pull/533
https://github.com/SoCo/SoCo/pull/467
http://python-soco.com/

soco Documentation, Release 0.27.0

1.11.14.1 New Features and Improvements

• The IP address used by the events listener can be configured (#444)

• Add support for night mode (#421) and dialog mode (#422) on devices supporting the respective feature.

• Add queue-able data structures for the music service items (#455)

• Add a method for queueing multiple items with a single request (#470)

• Add methods to get and set the uri(s) of a DidlObject. (#482)

• Add support for line in from other speakers (#460)

• Enhance add_to_queue() to with optional position argument (#471)

• Added by_name function to discovery to be able to get a device by player_name (#487)

• allow choice of how to play streams in play_uri (override Sonos default with force_radio=True) (#491)

• Added ramp_to_volume() method to smoothly change the volume (#506)

• Added FAQ, documentation and two examples to explain using SoCo’s Snapshot function (#493)

• Update documentation for add_uri_to_queue (#503)

• Added a FAQ section to the docs with play_uri and play local files answers (#481)

• A few queue related micro examples was added to the examples page in the docs (#484)

• Further documentation updates (#435, #436, #459, #476, #489, #496, #522)

1.11.14.2 Bugfixes

• Fixes an issue where restarting an application that had subscribed to events sometimes causes an error when the
events are delivered to the new instance (#437)

• Fixes an issue where multiple threads trying to subscribe to events in parallel would sometimes cause SoCo to
attempt to create multiple event listener servers and fail on socket.bind(). (#437)

• Fixes an issue where SoCo would not recognize object.container.playlistContainer.
sonos-favorite when receiving events (#438).

• Fixes a bug in play_uri where it would not play a http or https prefixed radio stream due to a change
in the Sonos API (issue #434). This change fixes it by replacing the two http type prefixes with Sonos’
x-rincon-mp3radio:// prefix (#434, #443)

• Fixes an exception being raised on Windows with discover. The error was caused by socket.
getsockname raising an exception on Windows with and unconnected unbound socket. Fixed by now simply
logging the sockets. (#445)

• Change to use SoCo method to determine coordinator in Snapshot (#529, #519)

• Prevent error when queue started from Alexa and using snapshot. Currently there is no was to restart a cloud
queue from SoCo, this PR just prevents Snapshot causing an error. (#530, #521)

• Fix add_multiple_to_queue fails with too many items (#488)

• Fixed log level (#534)

1.11.14.3 Backwards Compatability

• Dropped support for Python 2.6 (#325, #526) and added support for 3.6 (#528)

122 Chapter 1. Contents

https://github.com/SoCo/SoCo/pull/444
https://github.com/SoCo/SoCo/pull/421
https://github.com/SoCo/SoCo/pull/422
https://github.com/SoCo/SoCo/pull/455
https://github.com/SoCo/SoCo/pull/470
https://github.com/SoCo/SoCo/pull/482
https://github.com/SoCo/SoCo/pull/460
https://github.com/SoCo/SoCo/pull/471
https://github.com/SoCo/SoCo/pull/487
https://github.com/SoCo/SoCo/pull/491
https://github.com/SoCo/SoCo/pull/506
https://github.com/SoCo/SoCo/pull/493
https://github.com/SoCo/SoCo/pull/503
https://github.com/SoCo/SoCo/pull/481
https://github.com/SoCo/SoCo/pull/484
https://github.com/SoCo/SoCo/pull/435
https://github.com/SoCo/SoCo/pull/436
https://github.com/SoCo/SoCo/pull/459
https://github.com/SoCo/SoCo/pull/476
https://github.com/SoCo/SoCo/pull/489
https://github.com/SoCo/SoCo/pull/496
https://github.com/SoCo/SoCo/pull/522
https://github.com/SoCo/SoCo/pull/437
https://github.com/SoCo/SoCo/pull/437
https://github.com/SoCo/SoCo/pull/438
https://github.com/SoCo/SoCo/issues/434
https://github.com/SoCo/SoCo/pull/443
https://github.com/SoCo/SoCo/issues/445
https://github.com/SoCo/SoCo/pull/529
https://github.com/SoCo/SoCo/issues/519
https://github.com/SoCo/SoCo/pull/530
https://github.com/SoCo/SoCo/issues/521
https://github.com/SoCo/SoCo/pull/488
https://github.com/SoCo/SoCo/pull/534
https://github.com/SoCo/SoCo/issues/325
https://github.com/SoCo/SoCo/pull/526
https://github.com/SoCo/SoCo/pull/528

soco Documentation, Release 0.27.0

1.11.15 SoCo 0.12 release notes

SoCo 0.12 is a new version of the SoCo library. This release adds new features and fixes several bugs.

SoCo (Sonos Controller) is a simple Python class that allows you to programmatically control Sonos speakers.

1.11.15.1 New Features and Improvements

• New MusicService class for access to all the music services known to Sonos. Note that some of this code
is still unstable, and in particular the data structures returned by methods such as get_metadata may change
in future. (#262, #358)

• Add information to the docs about how to put SoCo in the Python path, for test execution (#327, #319)

• added to_dict() / from_dict() to DidlResource (#330, #318)

• All tests have been moved from the unittests directory to the tests directory (#336)

• For developers, more make targets, and a better sdist build (#346)

• Added discovery.any_soco(), for when you need a SoCo instance, but you don’t care which. This is
slightly better than the traditional device = soco.discover().pop() since it will return an existing
instance if one is available, without sending discovery packets (#262)

• Modified DidlObject.to_dict() so that any associated resources list will be also returned as a list of
dictionaries instead of returning a list of DidlResource objects. (#340, #338)

• Added a sonosdump tool in dev_tools, which can print out the various UPnP methods which Sonos uses
(#344)

• Added methods for sonos playlist management: reorder_sonos_playlist,
clear_sonos_playlist, move_in_sonos_playlist, remove_from_sonos_playlist,
get_sonos_playlist_by_attr (#352, #348, #353) and remove_sonos_playlist (#341, #345)

• Support playmodes repeat-one (REPEAT_ONE) and shuffle-repeat-one (SHUFFLE_REPEAT_ONE) introduced
by Sonos 6.0 (#387)

• Better discovery: SoCo tries harder to find devices on the local network, particularly where there are multiple
network interfaces. The default discovery timeout is also increased to 5 seconds (#395, #432)

• Large work package on the docs, which contains a new front page, more sections, some advanced topics and an
example page (#406, #360, #368, #362, #326, #369).

• Added optional timeout argument to be passed onto requests when getting speaker info (#302)

• Ignore .# specified subclasses in Didl xml. Several music services seem to use an out-of-spec way to make sub
classes in Didl, by specifying the subclass name or function after a #. This caused our implementation of Didl
to reject it. This has now been fixed by simple ignoring these un-official subclasses (#425)

• Added methods to manipulate sonos sleep functionality: set_sleep_timer, get_sleep_timer (#413)

• Various cleanups (#351)

• Extended get_speaker_info to return more information about the Sonos speakers (#335, #320)

1.11.15.2 Bugfixes

• Clear zone group cache and reparse zone group information after join and unjoin to prevent giving wrong
topology information. (#323, #321)

• Fix typo preventing SoCo from parsing the audio metadata object used when a TV is playing. (#331)

1.11. SoCo releases 123

http://python-soco.com/
https://github.com/SoCo/SoCo/pull/262
https://github.com/SoCo/SoCo/pull/358
https://github.com/SoCo/SoCo/pull/327
https://github.com/SoCo/SoCo/issues/319
https://github.com/SoCo/SoCo/pull/330
https://github.com/SoCo/SoCo/issues/318
https://github.com/SoCo/SoCo/pull/336
https://github.com/SoCo/SoCo/pull/346
https://github.com/SoCo/SoCo/pull/262
https://github.com/SoCo/SoCo/pull/340
https://github.com/SoCo/SoCo/issues/338
https://github.com/SoCo/SoCo/pull/344
https://github.com/SoCo/SoCo/pull/352
https://github.com/SoCo/SoCo/issues/348
https://github.com/SoCo/SoCo/pull/351
https://github.com/SoCo/SoCo/issues/341
https://github.com/SoCo/SoCo/pull/345
https://github.com/SoCo/SoCo/pull/387
https://github.com/SoCo/SoCo/pull/395
https://github.com/SoCo/SoCo/pull/432
https://github.com/SoCo/SoCo/pull/406
https://github.com/SoCo/SoCo/issues/360
https://github.com/SoCo/SoCo/pull/368
https://github.com/SoCo/SoCo/pull/362
https://github.com/SoCo/SoCo/issues/326
https://github.com/SoCo/SoCo/issues/369
https://github.com/SoCo/SoCo/pull/302
https://github.com/SoCo/SoCo/pull/425
https://github.com/SoCo/SoCo/pull/413
https://github.com/SoCo/SoCo/pull/351
https://github.com/SoCo/SoCo/pull/335
https://github.com/SoCo/SoCo/issues/320
https://github.com/SoCo/SoCo/pull/323
https://github.com/SoCo/SoCo/issues/321
https://github.com/SoCo/SoCo/pull/331

soco Documentation, Release 0.27.0

• Fix bug where SoCo would raise an exception if music services sent metadata with invalid XML characters
(#392, #386)

• Event lister was (incorrectly) responding to GET and HEAD requests, which could result in local files being
served (#430)

• Minor fix because ordereddict.values in py3 return ValuesView (#359)

• Fixed bugs with parsing events (#276)

• Fixed unit tests (#343, #342)

• Fix in MusicLibrary constructor (#370)

1.11.15.3 Backwards Compatability

• Dropped support for Python 3.2 (#324)

• Methods relating to the music library (get_artists, get_album_artists, get_albums and others)
have been moved to the music_library module. Instead of device.get_album_artists(), please
now use device.music_library.get_album_artists() etc. Old code will continue to work for
the moment, but will raise deprecation warnings (#350)

• Made a hard deprecation of the Spotify plugin since the API it relied on has been deprecated and it therefore no
longer worked (#401, #423)

• Dropped pylint checks for Python 2.6 (#363)

1.11.16 SoCo 0.11.1 release notes

SoCo 0.11.1 is a new version of the SoCo library. This release fixes a bug with the installation of SoCo.

SoCo (Sonos Controller) is a simple Python class that allows you to programmatically control Sonos speakers.

1.11.16.1 Bugfixes

• Installation fails on systems where the default encoding is not UTF-8 (#312, #313)

1.11.17 SoCo 0.11 release notes

SoCo 0.11 is a new version of the SoCo library. This release adds new features and fixes several bugs.

SoCo (Sonos Controller) is a simple Python class that allows you to programmatically control Sonos speakers.

1.11.17.1 New Features and Improvements

• The new properties is_playing_tv, is_playing_radio and is_playing_line_in have been
added (#225)

• A method get_item_album_art_uri has been added to return the absolute album art full uri so that it is
easy to put the album art in user interfaces (#240).

• Added support for satellite speaker detection in network topology parsing code (#245)

• Added support to search the music library for tracks, an artists’ albums and an artist’s album’s tracks (#246)

124 Chapter 1. Contents

https://github.com/SoCo/SoCo/pull/392
https://github.com/SoCo/SoCo/issues/386
https://github.com/SoCo/SoCo/issues/430
https://github.com/SoCo/SoCo/pull/359
https://github.com/SoCo/SoCo/issues/276
https://github.com/SoCo/SoCo/pull/343
https://github.com/SoCo/SoCo/issues/342
https://github.com/SoCo/SoCo/pull/370
https://github.com/SoCo/SoCo/issues/324
https://github.com/SoCo/SoCo/pull/350
https://github.com/SoCo/SoCo/issues/401
https://github.com/SoCo/SoCo/issues/401
https://github.com/SoCo/SoCo/issues/363
http://python-soco.com/
https://github.com/SoCo/SoCo/issues/312
https://github.com/SoCo/SoCo/pull/313
http://python-soco.com/
https://github.com/SoCo/SoCo/pull/225
https://github.com/SoCo/SoCo/pull/240
https://github.com/SoCo/SoCo/pull/245
https://github.com/SoCo/SoCo/pull/246

soco Documentation, Release 0.27.0

• A fairly extensive re-organisation of the DIDL metadata handling code, which brings SoCo more into line with
the DIDL-Lite spec, as adopted by Sonos. DIDL objects can have now have multiple URIs, and the interface is
much simpler. (#256)

• Event objects now have a timestamp field (#273)

• The IP address (ie network interface) for discovering Sonos speakers can now be specified (#277)

• It is now possible to trigger an update of the music library (#286)

• The event listener port is now configurable (#288)

• Methods that can only be executed on master speakers will now raise a SoCoSlaveException (#296)

• An example has been added that shows how to play local files by setting up a temporary HTTP server in python
(#307)

• Test cleanup (#309)

1.11.17.2 Bugfixes

• The value of the IP_MULTICAST_TTL option is now ensured to be one byte long (#269)

• Various encoding issues have been fixed (#293, #281, #306)

• Fix bug with browsing of imported playlists (#265)

• The discover method was broken in Python 3.4 (#271)

• An unknown / missing UPnP class in event subscriptions has been added (#266, #301, #303)

• Fix add_to_queue which was broken since the data structure refactoring (#308, #310)

1.11.17.3 Backwards Compatability

• The exception DidlCannotCreateMetadata has been deprecated. DidlMetadataError should be
used instead. (#256)

• Code which has been deprecated for more than 3 releases has been removed. See previous release notes for
deprecation notices. (#273)

1.11.18 SoCo 0.10 release notes

SoCo 0.10 is a new version of the SoCo library. This release adds new features and fixes several bugs.

SoCo (Sonos Controller) is a simple Python class that allows you to programmatically control Sonos speakers.

1.11.18.1 New Features

• Add support for taking a snapshot of the Sonos state, and then to restore it later (#224, #251)

• Added create_sonos_playlist_from_queue. Creates a new Sonos playlist from the current queue (#229)

1.11. SoCo releases 125

https://github.com/SoCo/SoCo/pull/256
https://github.com/SoCo/SoCo/pull/273
https://github.com/SoCo/SoCo/pull/277
https://github.com/SoCo/SoCo/pull/286
https://github.com/SoCo/SoCo/pull/288
https://github.com/SoCo/SoCo/pull/296
https://github.com/SoCo/SoCo/pull/307
https://github.com/SoCo/SoCo/pull/309
https://github.com/SoCo/SoCo/pull/269
https://github.com/SoCo/SoCo/issues/293
https://github.com/SoCo/SoCo/issues/281
https://github.com/SoCo/SoCo/pull/306
https://github.com/SoCo/SoCo/pull/265
https://github.com/SoCo/SoCo/issues/271
https://github.com/SoCo/SoCo/issues/266
https://github.com/SoCo/SoCo/issues/301
https://github.com/SoCo/SoCo/pull/303
https://github.com/SoCo/SoCo/issues/308
https://github.com/SoCo/SoCo/pull/310
https://github.com/SoCo/SoCo/pull/256
https://github.com/SoCo/SoCo/pull/273
http://python-soco.com/
https://github.com/SoCo/SoCo/pull/224
https://github.com/SoCo/SoCo/pull/251
https://github.com/SoCo/SoCo/pull/229

soco Documentation, Release 0.27.0

1.11.18.2 Improvements

• Added a queue_size property to quickly return the size of the queue without reading any items (#217)

• Add metadata to return structure of get_current_track_info (#220)

• Add option to play_uri that allows for the item to be set and then optionally played (#219)

• Add option to play_uri that allows playing with a URI and title instead of metadata (#221)

• Get the item ID from the XML responses which enables adding tracks for music services such as Rhapsody
which do not have all the detail in the item URI (#233)

• Added label and short_label properties, to provide a consistent readable label for group members (#228)

• Improved documentation (#248, #253, #259)

• Improved code examples (#250, #252)

1.11.18.3 Bugfixes

• Fixed a bug where get_ml_item() would fail if a radio station was played (#226)

• Fixed a timeout-related regression in soco.discover() (#244)

• Discovery code fixed to account for closing of multicast sockets by certain devices (#202, #201)

• Fixed a bug where sometimes zone groups would be created without a coordinator (#230)

1.11.18.4 Backwards Compatability

The metadata classes (ML*) have all been renamed (generally to Didl*), and aligned more closely with the underlying
XML. The Music Services data structures (MS*) have been moved to their own module, and metadata for radio
broadcasts is now returned properly (#243).

The URI class has been removed. As an alternative the method soco.SoCo.play_uri() can be used to enqueue
and play an URI. The class soco.data_structures.DIDLObject can be used if an object is required.

Work is still ongoing on the metadata classes, so further changes should be expected.

1.11.19 SoCo 0.9 release notes

1.11.19.1 New Features

• Alarm configuration (#171)

>>> from soco.alarms import Alarm, get_alarms
>>> # create an alarm with default properties
>>> # my_device is the SoCo instance on which the alarm will be played
>>> alarm = Alarm(my_device)
>>> print alarm.volume
20
>>> print get_alarms()
set([])
>>> # save the alarm to the Sonos system
>>> alarm.save()
>>> print get_alarms()
set([<Alarm id:88@15:26:15 at 0x107abb090>])

(continues on next page)

126 Chapter 1. Contents

https://github.com/SoCo/SoCo/pull/217
https://github.com/SoCo/SoCo/pull/220
https://github.com/SoCo/SoCo/pull/219
https://github.com/SoCo/SoCo/pull/221
https://github.com/SoCo/SoCo/pull/233
https://github.com/SoCo/SoCo/pull/228
https://github.com/SoCo/SoCo/pull/248
https://github.com/SoCo/SoCo/pull/253
https://github.com/SoCo/SoCo/pull/259
https://github.com/SoCo/SoCo/pull/250
https://github.com/SoCo/SoCo/pull/252
https://github.com/SoCo/SoCo/pull/226
https://github.com/SoCo/SoCo/pull/244
https://github.com/SoCo/SoCo/pull/202
https://github.com/SoCo/SoCo/pull/201
https://github.com/SoCo/SoCo/pull/230
https://github.com/SoCo/SoCo/pull/243
https://github.com/SoCo/SoCo/pull/171

soco Documentation, Release 0.27.0

(continued from previous page)

>>> # update the alarm
>>> alarm.recurrence = "ONCE"
>>> # Save it again for the change to take effect
>>> alarm.save()
>>> # Remove it
>>> alarm.remove()
>>> print get_alarms()
set([])

• Methods for browsing the Music library (#192, #203, #208)

import soco
soc = soco.SoCo('...ipaddress..')
some_album = soc.get_albums()['item_list'][0]
tracks_in_that_album = soc.browse(some_album)

• Support for full Album Art URIs (#207)

• Support for music queues (#214)

queue = soco.get_queue()
for item in queue:

print item.title

print queue.number_returned
print queue.total_matches
print queue.update_id

• Support for processing of LastChange events (#194)

• Support for write operations on Playlists (#198)

1.11.19.2 Improvements

• Improved test coverage (#159, #184)

• Fixes for Python 2.6 support (#175)

• Event-subscriptions can be auto-renewed (#179)

• The SoCo class can replaced by a custom implementation (#180)

• The cache can be globally disabled (#180)

• Music Library data structures are constructed for DIDL XML content (#191).

• Added previously removed support for PyPy (#205)

• All music library methods (browse, get_tracks etc. #203 and get_queue #214) now returns container
objects instead of dicts or lists. The metadata is now available from these container objects as named attributes,
so e.g. on a queue object you can access the size with queue.total_matches.

1.11.19.3 Backwards Compatability

• Music library methods return container objects instead of dicts and lists (see above). The old way of accessing
that metadata (by dictionary type indexing), has been deprecated and is planned to be removed 3 releases after
0.9.

1.11. SoCo releases 127

https://github.com/SoCo/SoCo/pull/192
https://github.com/SoCo/SoCo/pull/203
https://github.com/SoCo/SoCo/pull/208
https://github.com/SoCo/SoCo/pull/207
https://github.com/SoCo/SoCo/pull/214
https://github.com/SoCo/SoCo/pull/194
https://github.com/SoCo/SoCo/pull/198
https://github.com/SoCo/SoCo/pull/159
https://github.com/SoCo/SoCo/pull/184
https://github.com/SoCo/SoCo/pull/175
https://github.com/SoCo/SoCo/pull/179
https://github.com/SoCo/SoCo/pull/180
https://github.com/SoCo/SoCo/pull/180
https://github.com/SoCo/SoCo/pull/191
https://github.com/SoCo/SoCo/pull/205
https://github.com/SoCo/SoCo/pull/203
https://github.com/SoCo/SoCo/pull/214

soco Documentation, Release 0.27.0

1.11.20 SoCo 0.8 release notes

1.11.20.1 New Features

• Re-added support for Python 2.6 (#154)

• Added SoCo.get_sonos_playlists() (#114)

• Added methods for working with speaker topology

• soco.SoCo.group retrieves the soco.groups.ZoneGroup to which the speaker belongs (#132). The
group itself has a soco.groups.ZoneGroup.member attribute returning all of its members. Iterating
directly over the group is possible as well.

• Speakers can be grouped using soco.SoCo.join() (#136):

z1 = SoCo('192.168.1.101')
z2 = SoCo('192.168.1.102')
z1.join(z2)

• soco.SoCo.all_zones and soco.SoCo.visible_zones return all and all visible zones, respectively.

• soco.SoCo.is_bridge indicates if the SoCo instance represents a bridge.

• soco.SoCo.is_coordinator indicates if the SoCo instance is a group coordinator (#166)

• A new soco.plugins.spotify.Spotify plugin allows querying and playing the Spotify music cata-
logue (#119):

from soco.plugins.spotify import Spotify
from soco.plugins.spotify import SpotifyTrack
create a new plugin, pass the soco instance to it
myplugin = Spotify(device)
print 'index: ' + str(myplugin.add_track_to_queue(SpotifyTrack('

spotify:track:20DfkHC5grnKNJCzZQB6KC')))
print 'index: ' + str(myplugin.add_album_to_queue(SpotifyAlbum('

spotify:album:6a50SaJpvdWDp13t0wUcPU')))

• A soco.data_structures.URI item can be passed to add_to_queue which allows playing music
from arbitrary URIs (#147)

import soco
from soco.data_structures import URI

soc = soco.SoCo('...ip_address...')
uri = URI('http://www.noiseaddicts.com/samples/17.mp3')
soc.add_to_queue(uri)

• A new include_invisible parameter to soco.discover() can be used to retrieve invisible speakers
or bridges (#146)

• A new timeout parameter to soco.discover(). If no zones are found within timeout seconds None
is returned. (#146)

• Network requests can be cached for better performance (#131).

• It is now possible to subscribe to events of a service using its soco.services.Service.subscribe
method, which returns a soco.events.Subscription object. To unsubscribe, call the soco.events.
Subscription.unsubscribe method on the returned object. (#121, #130)

• Support for reading and setting crossfade (#165)

128 Chapter 1. Contents

https://github.com/SoCo/SoCo/pull/154
https://github.com/SoCo/SoCo/pull/114
https://github.com/SoCo/SoCo/pull/132
https://github.com/SoCo/SoCo/pull/136
https://github.com/SoCo/SoCo/pull/166
https://github.com/SoCo/SoCo/pull/119
https://github.com/SoCo/SoCo/pull/147
https://github.com/SoCo/SoCo/pull/146
https://github.com/SoCo/SoCo/pull/146
https://github.com/SoCo/SoCo/pull/131
https://github.com/SoCo/SoCo/pull/121
https://github.com/SoCo/SoCo/pull/130
https://github.com/SoCo/SoCo/pull/165

soco Documentation, Release 0.27.0

1.11.20.2 Improvements

• Performance improvements for speaker discovery (#146)

• Various improvements to the Wimp plugin (#140).

• Test coverage tracking using coveralls.io (#163)

1.11.20.3 Backwards Compatability

• Queue related use 0-based indexing consistently (#103)

• soco.SoCo.get_speakers_ip() is deprecated in favour of soco.discover() (#124)

1.11.21 SoCo 0.7 release notes

1.11.21.1 New Features

• All information about queue and music library items, like e.g. the title and album of a track, are now included in
data structure classes instead of dictionaries (the classes are available in the The Music Library Data Structures
sub-module). This advantages of this approach are:

– The type of the item is identifiable by its class name

– They have useful __str__ representations and an __equals__ method

– Information is available as named attributes

– They have the ability to produce their own UPnP meta-data (which is used by the add_to_queue
method).

See the Backwards Compatibility notice below.

• A webservice analyzer has been added in dev_tools/analyse_ws.py (#46).

• The commandline interface has been split into a separate project socos. It provides an command line interface
on top of the SoCo library, and allows users to control their Sonos speakers from scripts and from an interactive
shell.

• Python 3.2 and later is now supported in addition to 2.7.

• A simple version of the first plugin for the Wimp service has been added (#93).

• The new soco.discover() method provides an easier interface for discovering speakers in your network.
SonosDiscovery has been deprecated in favour of it (see Backwards Compatability below).

• SoCo instances are now singletons per IP address. For any given IP address, there is only one SoCo instance.

• The code for generating the XML to be sent to Sonos devices has been completely rewritten, and it is now much
easier to add new functionality. All services exposed by Sonos zones are now available if you need them (#48).

1.11.21.2 Backwards Compatability

Warning: Please read the section below carefully when upgrading to SoCo 0.7.

1.11. SoCo releases 129

https://github.com/SoCo/SoCo/pull/146
https://github.com/SoCo/SoCo/pull/140
https://coveralls.io/
https://github.com/SoCo/SoCo/pull/163
https://github.com/SoCo/SoCo/pull/103
https://github.com/SoCo/SoCo/pull/124
https://github.com/SoCo/SoCo/pull/46
https://github.com/SoCo/socos
https://github.com/SoCo/SoCo/pull/93
https://github.com/SoCo/SoCo/pull/48

soco Documentation, Release 0.27.0

Data Structures

The move to using data structure classes for music item information instead of dictionaries introduces some back-
wards incompatible changes in the library (see #83). The get_queue and get_library_information func-
tions (and all methods derived from the latter) are affected. In the data structure classes, information like e.g. the title
is now available as named attributes. This means that by the update to 0.7 it will also be necessary to update your code
like e.g:

Version < 0.7
for item in soco.get_queue():

print item['title']
Version >=0.7
for item in soco.get_queue():

print item.title

SonosDiscovery

The SonosDiscovery class has been deprecated (see #80 and #75).

Instead of the following

>>> import soco
>>> d = soco.SonosDiscovery()
>>> ips = d.get_speaker_ips()
>>> for i in ips:
... s = soco.SoCo(i)
... print s.player_name

you should now write

>>> import soco
>>> for s in soco.discover():
... print s.player_name

Properties

A number of methods have been replaced with properties, to simplify use (see #62)

For example, use

soco.volume = 30
soco.volume -=3
soco.status_light = True

instead of

soco.volume(30)
soco.volume(soco.volume()-3)
soco.status_light("On")

130 Chapter 1. Contents

https://github.com/SoCo/SoCo/pull/83
https://github.com/SoCo/SoCo/pull/80
https://github.com/SoCo/SoCo/issues/75
https://github.com/SoCo/SoCo/pull/62

soco Documentation, Release 0.27.0

1.11.22 SoCo 0.6 release notes

1.11.22.1 New features

• Music library information: Several methods has been added to get information about the music library. It is
now possible to get e.g. lists of tracks, albums and artists.

• Raise exceptions on errors: Several SoCo specific exceptions has been added. These exceptions are now
raised e.g. when SoCo encounters communications errors instead of returning an error codes. This introduces a
backwards incompatible change in SoCo that all users should be aware of.

1.11.22.2 For SoCo developers

• Added plugin framework: A plugin framework has been added to SoCo. The primary purpose of this frame-
work is to provide a natural partition of the code, in which code that is specific to the individual music services
is separated out into its own class as a plugin. Read more about the plugin framework in the docs.

• Added unit testing framework: A unit testing framework has been added to SoCo and unit tests has been
written for 30% of the methods in the SoCo class. Please consider supplementing any new functionality with
the appropriate unit tests and fell free to write unit tests for any of the methods that are still missing.

1.11.22.3 Coming next

• Data structure change: For the next version of SoCo it is planned to change the way SoCo handles data. It is
planned to use classes for all the data structures, both internally and for in- and output. This will introduce a
backwards incompatible change and therefore users of SoCo should be aware that extra work will be needed
upon upgrading from version 0.6 to 0.7. The data structure changes will be described in more detail in the
release notes for version 0.7.

1.12 Unit and integration tests

There are two sorts of tests written for the SoCo package. Unit tests implement elementary checks of whether the
individual methods produce the expected results. Integration tests check that the package as a whole is able to interface
properly with the Sonos hardware. Such tests are especially useful during re-factoring and to check that already
implemented functionality continues to work past updates to the Sonos units’ internal software.

1.12.1 Setting up your environment

To run the unit tests, you will need to have the pytest testing tool installed.

You can install them and other development dependencies using the requirements-dev.txt file like this:

pip install -r requirements-dev.txt

1.12.2 Running the unit tests

There are different ways of running the unit tests. The easiest is to use py.test's automatic test discovery. Just
change to the root directory of the SoCo package and type:

1.12. Unit and integration tests 131

http://pytest.org/latest

soco Documentation, Release 0.27.0

py.test

For others, see the py.test documentation

Note: To run the unittests in this way, the soco package must be importable, i.e. the folder that contains it (the root
folder of the git archive) must be in the list of paths that Python can import from (the PYTHONPATH). The easiest
way to set this up, if you are using a virtual environment, is to install SoCo from the git archive in editable mode. This
is done by executing the following command from the git archive root:

pip install -e .

1.12.3 Running the integration tests

At the moment, the integration tests cannot be run under the control of py.test. To run them, enter the unittest
folder in the source code checkout and run the test execution script execute_unittests.py (it is required that
the SoCo checkout is added to the Python path of your system). To run all the unit tests for the SoCo class execute the
following command:

python execute_unittests.py --modules soco --ip 192.168.0.110

where the IP address should be replaced with the IP address of the Sonos® unit you want to use for the unit tests
(NOTE! At present the unit tests for the SoCo module requires your Sonos® unit to be playing local network music
library tracks from the queue and have at least two such tracks in the queue). You can get a list of all the units in your
network and their IP addresses by running:

python execute_unittests.py --list

To get the help for the unit test execution script which contains a description of all the options run:

python execute_unittests.py --help

1.12.4 Unit test code structure and naming conventions

The unit tests for the SoCo code should be organized according to the following guidelines.

1.12.4.1 One unit test module per class under test

Unit tests should be organized into modules, one module, i.e. one file, for each class that should be tested. The module
should be named similarly to the class except replacing CamelCase with underscores and followed by _unittest.
py.

Example: Unit tests for the class FooBar should be stored in foo_bar_unittests.py.

1.12.4.2 One unit test class per method under test

Inside the unit test modules the unit test should be organized into one unit test case class per method under test. In
order for the test execution script to be able to calculate the test coverage, the test classes should be named the same
as the methods under test except that the lower case underscores should be converted to CamelCase. If the method is
private, i.e. prefixed with 1 or 2 underscores, the test case class name should be prefixed with the word Private.

132 Chapter 1. Contents

http://pytest.org/latest/usage.html

soco Documentation, Release 0.27.0

Examples:

Name of method under test Name of test case class
get_current_track_info GetCurrentTrackInfo
__parse_error PrivateParseError
_my_hidden_method PrivateMyHiddenMethod

1.12.5 Add an unit test to an existing unit test module

To add a unit test case to an existing unit test module Foo first check with the following command which methods that
does not yet have unit tests:

python execute_unittests.py --modules foo --coverage

After having identified a method to write a unit test for, consider what criteria should be tested, e.g. if the method
executes and returns the expected output on valid input and if it fails as expected on invalid input. Then implement the
unit test by writing a class for it, following the naming convention mentioned in section One unit test class per method
under test. You can read more about unit test classes in the reference documentation and there is a good introduction
to unit testing in Mark Pilgrim’s “Dive into Python” (though the aspects of test driven development, that it describes,
is not a requirement for SoCo development).

1.12.5.1 Special unit test design consideration for SoCo

SoCo is developed purely by volunteers in their spare time. This leads to some special consideration during unit test
design.

First of, volunteers will usually not have extra Sonos® units dedicated for testing. For this reason the unit tests should
be developed in such a way that they can be run on units in use and with people around, so e.g it should be avoided
settings the volume to max.

Second, being developed in peoples spare time, the development is likely a recreational activity, that might just be
accompanied by music from the same unit that should be tested. For this reason, that unit should be left in the same
state after test as it was before. That means that the play list, play state, sound settings etc. should be restored after the
testing is complete.

1.12.6 Add a new unit test module (for a new class under test)

To add unit tests for the methods in a new class follow the steps below:

1. Make a new file in the unit test folder named as mentioned in section One unit test module per class under test.

2. (Optional) Define an init function in the unit test module. Do this only if it is necessary to pass information
to the tests at run time. Read more about the init function in the section The init function.

3. Add test case classes to this module. See Add an unit test to an existing unit test module.

Then it is necessary to make the unit test execution framework aware of your unit test module. Do this by making the
following additions to the file execute_unittests.py.:

1. Import the class under test and the unit test module in the beginning of the file

2. Add an item to the UNITTEST_MODULES dict located right after the ### MAIN SCRIPT comment. The
added item should itself be a dictionary with items like this:

1.12. Unit and integration tests 133

http://docs.python.org/2/library/unittest.html
http://www.diveintopython.net/unit_testing/index.html

soco Documentation, Release 0.27.0

UNITTEST_MODULES = {
'soco': {'name': 'SoCo', 'unittest_module': soco_unittest,

'class': soco.SoCo, 'arguments': {'ip': ARGS.ip}},
'foo_bar': {'name': 'FooBar', 'unittest_module': foo_bar_unittest,

'class': soco.FooBar,'arguments': {'ip': ARGS.ip}}
}

where both the new imaginary foo_bar entry and the existing soco entry are shown for clarity. The arguments
dict is what will be passed on to the init method, see section The init function.

3. Lastly, add the new module to the help text for the modules command line argument, defined in the
__build_option_parser function:

parser.add_argument('--modules', type=str, default=None, help=''
'the modules to run unit test for can be '
'\'soco\', \'foo_bar\' or \'all\'')

The name that should be added to the text is the key for the unit test module entry in the UNITTEST_MODULES
dict.

1.12.6.1 The init function

Normally unit tests should be self-contained and therefore they should have all the data they will need built in. How-
ever, that does not apply to SoCo, because the IP’s of the Sonos® units will be required and there is no way to know
them in advance. Therefore, the execution script will call the function init in the unit test modules, if it exists,
with a set of predefined arguments that can then be used for unit test initialization. Note that the function is to be
named init , not __init__ like the class initializers. The init function is called with one argument, which is the
dictionary defined under the key arguments in the unit test modules definition. Please regard this as an exception to
the general unit test best practices guidelines and use it only if there are no other option.

1.13 Release Procedures

This document describes the necessary steps for creating a new release of SoCo.

1.13.1 Preparations

• Verify the version number stated in the release ticket (according to semantic versioning. Tag names should be
prefixed with v.

• Create the release notes RST document in doc/releases by copying contents from the release notes issue.
Texts can be rewritten for legibility.

• Verify that all tests pass locally and on all supported versions of Python via Travis-CI (the status is visible on
the project frontpage on GitHub).

1.13.2 Create and Publish

• Update the version number in __init__.py (see example) and commit.

• (If any changes other than the version number was made in preparation for the release, push the release com-
mit to GitHub before proceeding, to ensure that all the continuous integration passes. The automatic deployment
to PyPI mentioned below, will not work if continuous integration fails.)

134 Chapter 1. Contents

http://semver.org/
https://github.com/SoCo/SoCo/commit/d35171213eabbc4

soco Documentation, Release 0.27.0

• Tag the current commit, eg

git tag -a v0.7 -m 'release version 0.7'

• Push the tag. This will create a new release on GitHub, and will automatically deploy the new version to PyPI
(see #593)

git push --tags

• Update the GitHub release using the release notes from the documentation. The release notes can be abbreviated
if a link to the documentation is provided.

1.13.3 Wrap-Up

• Close the milestone and issues for the release.

• Update the version number in __init__.py with an added “+” to indicate development status (see example).

• Share the news!

1.13.4 Preparation for next release

• Define the next version number and expected release date (3 month after the current release date, as per #524)).

• Create the milestone and set the release date.

• Create an issue for the upcoming release (tagged as Release), and one for the corresponding release notes.

1.13. Release Procedures 135

https://github.com/SoCo/SoCo/pull/593
https://github.com/SoCo/SoCo/releases/new
https://github.com/SoCo/SoCo/commit/2bf8caf7736772920bafd181d8b844269d95be17
https://github.com/SoCo/SoCo/issues/524
https://github.com/SoCo/SoCo/issues?q=is%3Aissue+is%3Aopen+label%3ARelease

soco Documentation, Release 0.27.0

136 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

137

soco Documentation, Release 0.27.0

138 Chapter 2. Indices and tables

Python Module Index

a
soco.alarms, 34
soco.music_services.accounts, 19

c
soco.cache, 38
soco.config, 40
soco.core, 41

d
soco.data_structures, 60
soco.discovery, 78

e
soco.events, 82
soco.events_base, 85
soco.events_twisted, 89
soco.exceptions, 93

g
soco.groups, 94

m
soco.ms_data_structures, 96
soco.music_library, 99
soco.music_services.music_service, 21

p
soco.plugins, 34
soco.plugins.example, 27
soco.plugins.plex, 33
soco.plugins.sharelink, 30
soco.plugins.spotify, 27
soco.plugins.wimp, 28

s
soco.services, 104
soco.snapshot, 110
soco.soap, 111

t
soco.music_services.token_store, 20

u
soco.utils, 113

x
soco.xml, 114

139

soco Documentation, Release 0.27.0

140 Python Module Index

Index

Symbols
_BaseCache (class in soco.cache), 38
__cause__ (soco.exceptions.EventParseException at-

tribute), 94
_translation (soco.data_structures.DidlAlbum at-

tribute), 70
_translation (soco.data_structures.DidlAlbumList

attribute), 74
_translation (soco.data_structures.DidlAudioBook

attribute), 66
_translation (soco.data_structures.DidlAudioBroadcast

attribute), 67
_translation (soco.data_structures.DidlAudioBroadcastFavorite

attribute), 68
_translation (soco.data_structures.DidlAudioItem

attribute), 65
_translation (soco.data_structures.DidlComposer

attribute), 72
_translation (soco.data_structures.DidlContainer

attribute), 69
_translation (soco.data_structures.DidlFavorite at-

tribute), 68
_translation (soco.data_structures.DidlGenre at-

tribute), 76
_translation (soco.data_structures.DidlItem at-

tribute), 64
_translation (soco.data_structures.DidlMusicAlbum

attribute), 70
_translation (soco.data_structures.DidlMusicAlbumCompilation

attribute), 71
_translation (soco.data_structures.DidlMusicAlbumFavorite

attribute), 71
_translation (soco.data_structures.DidlMusicArtist

attribute), 73
_translation (soco.data_structures.DidlMusicGenre

attribute), 77
_translation (soco.data_structures.DidlMusicTrack

attribute), 66
_translation (soco.data_structures.DidlObject at-

tribute), 63
_translation (soco.data_structures.DidlPerson at-

tribute), 72
_translation (soco.data_structures.DidlPlaylistContainer

attribute), 74
_translation (soco.data_structures.DidlPlaylistContainerFavorite

attribute), 75
_translation (soco.data_structures.DidlPlaylistContainerTracklist

attribute), 76
_translation (soco.data_structures.DidlRadioShow

attribute), 78
_translation (soco.data_structures.DidlRecentShow

attribute), 67
_translation (soco.data_structures.DidlSameArtist

attribute), 75

A
Account (class in soco.music_services.accounts), 19
Action (class in soco.services), 104
actions (soco.services.Service attribute), 107
add_item_to_sonos_playlist()

(soco.core.SoCo method), 57
add_multiple_to_queue() (soco.core.SoCo

method), 55
add_share_link_to_queue()

(soco.plugins.sharelink.ShareLinkPlugin
method), 32

add_to_queue() (soco.core.SoCo method), 55
add_to_queue() (soco.plugins.plex.PlexPlugin

method), 34
add_uri_to_queue() (soco.core.SoCo method), 55
Alarm (class in soco.alarms), 36
alarm_id (soco.alarms.Alarm attribute), 37
AlarmClock (class in soco.services), 108
Alarms (class in soco.alarms), 35
album (soco.ms_data_structures.MSTrack attribute), 98
album_art_uri (soco.ms_data_structures.MusicServiceItem

attribute), 98
album_artist_display_option

(soco.music_library.MusicLibrary attribute),

141

soco Documentation, Release 0.27.0

103
all_groups (soco.core.SoCo attribute), 51
all_zones (soco.core.SoCo attribute), 52
any_soco() (in module soco.discovery), 79
AppleMusicShare (class in soco.plugins.sharelink),

32
Argument (class in soco.services), 104
artist (soco.ms_data_structures.MSAlbum attribute),

98
artist (soco.ms_data_structures.MSTrack attribute),

98
audio_delay (soco.core.SoCo attribute), 50
AudioIn (class in soco.services), 108
auto_renew_fail (soco.events_base.SubscriptionBase

attribute), 87
available_actions (soco.core.SoCo attribute), 55
available_search_categories

(soco.music_services.music_service.MusicService
attribute), 24

AVTransport (class in soco.services), 109

B
balance (soco.core.SoCo attribute), 50
base_url (soco.services.Service attribute), 105
bass (soco.core.SoCo attribute), 49
begin_authentication()

(soco.music_services.music_service.MusicService
method), 24

begin_authentication()
(soco.music_services.music_service.MusicServiceSoapClient
method), 22

boot_seqnum (soco.core.SoCo attribute), 45
browse() (soco.music_library.MusicLibrary method),

102
browse() (soco.plugins.wimp.Wimp method), 29
browse_by_idstring()

(soco.music_library.MusicLibrary method),
102

build_album_art_full_uri()
(soco.music_library.MusicLibrary method), 99

build_command() (soco.services.Service method),
106

buttons_enabled (soco.core.SoCo attribute), 53
by_name() (in module soco.discovery), 79

C
Cache (class in soco.cache), 40
cache (soco.services.Service attribute), 105
CACHE_ENABLED (in module soco.config), 40
call() (soco.music_services.music_service.MusicServiceSoapClient

method), 21
call() (soco.soap.SoapMessage method), 112
callback (soco.events_twisted.Subscription attribute),

91

camel_to_underscore() (in module soco.utils),
113

can_play (soco.ms_data_structures.MusicServiceItem
attribute), 98

CannotCreateDIDLMetadata, 93
canonical_uri() (soco.plugins.sharelink.AppleMusicShare

method), 32
canonical_uri() (soco.plugins.sharelink.DeezerShare

method), 32
canonical_uri() (soco.plugins.sharelink.ShareClass

method), 30
canonical_uri() (soco.plugins.sharelink.SpotifyShare

method), 31
canonical_uri() (soco.plugins.sharelink.TIDALShare

method), 31
channel (soco.core.SoCo attribute), 46
clear() (soco.cache._BaseCache method), 38
clear() (soco.cache.Cache method), 40
clear() (soco.cache.NullCache method), 38
clear() (soco.cache.TimedCache method), 40
clear_queue() (soco.core.SoCo method), 56
clear_sonos_playlist() (soco.core.SoCo

method), 58
clear_zone_groups() (soco.core.SoCo method),

52
complete_authentication()

(soco.music_services.music_service.MusicService
method), 25

complete_authentication()
(soco.music_services.music_service.MusicServiceSoapClient
method), 22

compose_args() (soco.services.Service method), 106
contactable() (in module soco.discovery), 81
ContentDirectory (class in soco.services), 109
control_url (soco.services.Service attribute), 105
coordinator (soco.groups.ZoneGroup attribute), 95
count (soco.events_base.SubscriptionsMap attribute),

89
count (soco.events_twisted.SubscriptionsMapTwisted

attribute), 92
create_sonos_playlist() (soco.core.SoCo

method), 56
create_sonos_playlist_from_queue()

(soco.core.SoCo method), 56
create_stereo_pair() (soco.core.SoCo method),

52
cross_fade (soco.core.SoCo attribute), 46

D
DeezerShare (class in soco.plugins.sharelink), 31
default_timeout (soco.cache.TimedCache at-

tribute), 39
delete() (soco.cache._BaseCache method), 38
delete() (soco.cache.Cache method), 40

142 Index

soco Documentation, Release 0.27.0

delete() (soco.cache.NullCache method), 38
delete() (soco.cache.TimedCache method), 39
delete_library_share()

(soco.music_library.MusicLibrary method),
104

deleted (soco.music_services.accounts.Account
attribute), 19

deprecated (class in soco.utils), 113
desc (soco.music_services.music_service.MusicService

attribute), 24
description (soco.plugins.wimp.Wimp attribute), 29
DeviceProperties (class in soco.services), 109
dialog_level (soco.core.SoCo attribute), 51
dialog_mode (soco.core.SoCo attribute), 50
didl_class_to_soco_class() (in module

soco.data_structures), 61
didl_metadata (soco.ms_data_structures.MusicServiceItem

attribute), 97
DidlAlbum (class in soco.data_structures), 69
DidlAlbumList (class in soco.data_structures), 73
DidlAudioBook (class in soco.data_structures), 66
DidlAudioBroadcast (class in

soco.data_structures), 66
DidlAudioBroadcastFavorite (class in

soco.data_structures), 67
DidlAudioItem (class in soco.data_structures), 65
DidlComposer (class in soco.data_structures), 72
DidlContainer (class in soco.data_structures), 69
DidlFavorite (class in soco.data_structures), 68
DidlGenre (class in soco.data_structures), 76
DidlItem (class in soco.data_structures), 64
DidlMetaClass (class in soco.data_structures), 62
DIDLMetadataError, 93
DidlMusicAlbum (class in soco.data_structures), 70
DidlMusicAlbumCompilation (class in

soco.data_structures), 71
DidlMusicAlbumFavorite (class in

soco.data_structures), 70
DidlMusicArtist (class in soco.data_structures), 72
DidlMusicGenre (class in soco.data_structures), 76
DidlMusicTrack (class in soco.data_structures), 65
DidlObject (class in soco.data_structures), 62
DidlPerson (class in soco.data_structures), 71
DidlPlaylistContainer (class in

soco.data_structures), 74
DidlPlaylistContainerFavorite (class in

soco.data_structures), 75
DidlPlaylistContainerTracklist (class in

soco.data_structures), 75
DidlRadioShow (class in soco.data_structures), 77
DidlRecentShow (class in soco.data_structures), 67
DidlResource (class in soco.data_structures), 61
DidlSameArtist (class in soco.data_structures), 74
discover() (in module soco.discovery), 78

do_NOTIFY() (soco.events.EventNotifyHandler
method), 83

duration (soco.data_structures.DidlResource at-
tribute), 62

duration (soco.ms_data_structures.MSTrack at-
tribute), 98

E
enabled (soco.cache._BaseCache attribute), 38
end_direct_control_session()

(soco.core.SoCo method), 48
Event (class in soco.events_base), 85
EVENT_ADVERTISE_IP (in module soco.config), 40
EVENT_LISTENER_IP (in module soco.config), 41
EVENT_LISTENER_PORT (in module soco.config), 41
event_subscription_url (soco.services.Service

attribute), 105
event_vars (soco.services.Service attribute), 108
EventListener (class in soco.events), 83
EventListener (class in soco.events_twisted), 90
EventListenerBase (class in soco.events_base), 86
EventNotifyHandler (class in soco.events), 83
EventNotifyHandler (class in

soco.events_twisted), 90
EventNotifyHandlerBase (class in

soco.events_base), 86
EventParseException, 93
events (soco.events_base.SubscriptionBase attribute),

87
EVENTS_MODULE (in module soco.config), 41
EventServer (class in soco.events), 82
EventServerThread (class in soco.events), 83
ExamplePlugin (class in soco.plugins.example), 27
exception (soco.exceptions.SoCoFault attribute), 94
extended_id (soco.ms_data_structures.MusicServiceItem

attribute), 98
extract() (soco.plugins.sharelink.AppleMusicShare

method), 32
extract() (soco.plugins.sharelink.DeezerShare

method), 32
extract() (soco.plugins.sharelink.ShareClass

method), 30
extract() (soco.plugins.sharelink.SpotifyShare

method), 31
extract() (soco.plugins.sharelink.TIDALShare

method), 31

F
finished_subscribing()

(soco.events_twisted.SubscriptionsMapTwisted
method), 92

first_cap() (in module soco.utils), 114
fixed_volume (soco.core.SoCo attribute), 51
form_name() (in module soco.data_structures), 61

Index 143

soco Documentation, Release 0.27.0

form_uri() (soco.plugins.wimp.Wimp static method),
30

from_config_file()
(soco.music_services.token_store.JsonFileTokenStore
class method), 20

from_dict() (soco.data_structures.DidlObject class
method), 63

from_dict() (soco.data_structures.DidlResource
class method), 62

from_dict() (soco.ms_data_structures.MusicServiceItem
class method), 97

from_element() (soco.data_structures.DidlObject
class method), 63

from_element() (soco.data_structures.DidlResource
class method), 62

from_name() (soco.plugins.SoCoPlugin class
method), 34

from_xml() (soco.ms_data_structures.MusicServiceItem
class method), 96

G
get() (soco.alarms.Alarms method), 36
get() (soco.cache._BaseCache method), 38
get() (soco.cache.Cache method), 40
get() (soco.cache.NullCache method), 38
get() (soco.cache.TimedCache method), 39
get_accounts() (soco.music_services.accounts.Account

class method), 19
get_accounts_for_service()

(soco.music_services.accounts.Account class
method), 19

get_alarms() (in module soco.alarms), 37
get_album_artists()

(soco.music_library.MusicLibrary method), 99
get_albums() (soco.music_library.MusicLibrary

method), 99
get_albums() (soco.plugins.wimp.Wimp method), 29
get_albums_for_artist()

(soco.music_library.MusicLibrary method),
103

get_all_music_services_names()
(soco.music_services.music_service.MusicService
class method), 23

get_artists() (soco.music_library.MusicLibrary
method), 99

get_artists() (soco.plugins.wimp.Wimp method),
29

get_battery_info() (soco.core.SoCo method), 60
get_composers() (soco.music_library.MusicLibrary

method), 100
get_current_media_info() (soco.core.SoCo

method), 54
get_current_track_info() (soco.core.SoCo

method), 54

get_current_transport_info()
(soco.core.SoCo method), 54

get_data_for_name()
(soco.music_services.music_service.MusicService
class method), 24

get_extended_metadata()
(soco.music_services.music_service.MusicService
method), 26

get_extended_metadata_text()
(soco.music_services.music_service.MusicService
method), 26

get_favorite_radio_shows() (soco.core.SoCo
method), 56

get_favorite_radio_shows()
(soco.music_library.MusicLibrary method),
100

get_favorite_radio_stations()
(soco.core.SoCo method), 56

get_favorite_radio_stations()
(soco.music_library.MusicLibrary method),
100

get_genres() (soco.music_library.MusicLibrary
method), 100

get_last_update()
(soco.music_services.music_service.MusicService
method), 26

get_listen_ip() (in module soco.events_base), 89
get_media_metadata()

(soco.music_services.music_service.MusicService
method), 26

get_media_uri() (soco.music_services.music_service.MusicService
method), 26

get_metadata() (soco.music_services.music_service.MusicService
method), 25

get_ms_item() (in module soco.ms_data_structures),
96

get_music_library_information()
(soco.music_library.MusicLibrary method),
100

get_music_service_information()
(soco.plugins.wimp.Wimp method), 29

get_playlists() (soco.music_library.MusicLibrary
method), 100

get_playlists() (soco.plugins.wimp.Wimp
method), 29

get_queue() (soco.core.SoCo method), 55
get_sleep_timer() (soco.core.SoCo method), 57
get_soap_header()

(soco.music_services.music_service.MusicServiceSoapClient
method), 21

get_sonos_favorites() (soco.core.SoCo
method), 56

get_sonos_favorites()
(soco.music_library.MusicLibrary method),

144 Index

soco Documentation, Release 0.27.0

100
get_sonos_playlist_by_attr()

(soco.core.SoCo method), 59
get_sonos_playlists() (soco.core.SoCo

method), 55
get_speaker_info() (soco.core.SoCo method), 54
get_subscription()

(soco.events_base.SubscriptionsMap method),
89

get_tracks() (soco.music_library.MusicLibrary
method), 100

get_tracks() (soco.plugins.wimp.Wimp method), 29
get_tracks_for_album()

(soco.music_library.MusicLibrary method),
103

get_uri() (soco.data_structures.DidlObject method),
64

group (soco.core.SoCo attribute), 51
GroupManagement (class in soco.services), 109
GroupRenderingControl (class in soco.services),

110

H
handle_notification()

(soco.events_base.EventNotifyHandlerBase
method), 86

handle_upnp_error() (soco.services.Service
method), 107

has_satellites (soco.core.SoCo attribute), 45
has_subwoofer (soco.core.SoCo attribute), 45
has_token() (soco.music_services.token_store.JsonFileTokenStore

method), 20
has_token() (soco.music_services.token_store.TokenStoreBase

method), 20
household_id (soco.core.SoCo attribute), 45

I
id_to_extended_id() (soco.plugins.wimp.Wimp

static method), 30
ip_address (soco.core.SoCo attribute), 45
is_bridge (soco.core.SoCo attribute), 45
is_coordinator (soco.core.SoCo attribute), 45
is_playing_line_in (soco.core.SoCo attribute), 52
is_playing_radio (soco.core.SoCo attribute), 52
is_playing_tv (soco.core.SoCo attribute), 53
is_running (soco.events_base.EventListenerBase at-

tribute), 86
is_satellite (soco.core.SoCo attribute), 45
is_share_link() (soco.plugins.sharelink.ShareLinkPlugin

method), 32
is_soundbar (soco.core.SoCo attribute), 46
is_subscribed (soco.events_base.SubscriptionBase

attribute), 87
is_subwoofer (soco.core.SoCo attribute), 45

is_valid_recurrence() (in module soco.alarms),
34

is_visible (soco.core.SoCo attribute), 45
item_class (soco.data_structures.DidlAlbum at-

tribute), 69
item_class (soco.data_structures.DidlAlbumList at-

tribute), 73
item_class (soco.data_structures.DidlAudioBook at-

tribute), 66
item_class (soco.data_structures.DidlAudioBroadcast

attribute), 67
item_class (soco.data_structures.DidlAudioBroadcastFavorite

attribute), 68
item_class (soco.data_structures.DidlAudioItem at-

tribute), 65
item_class (soco.data_structures.DidlComposer at-

tribute), 72
item_class (soco.data_structures.DidlContainer at-

tribute), 69
item_class (soco.data_structures.DidlFavorite

attribute), 68
item_class (soco.data_structures.DidlGenre at-

tribute), 76
item_class (soco.data_structures.DidlItem attribute),

64
item_class (soco.data_structures.DidlMusicAlbum

attribute), 70
item_class (soco.data_structures.DidlMusicAlbumCompilation

attribute), 71
item_class (soco.data_structures.DidlMusicAlbumFavorite

attribute), 71
item_class (soco.data_structures.DidlMusicArtist at-

tribute), 73
item_class (soco.data_structures.DidlMusicGenre

attribute), 77
item_class (soco.data_structures.DidlMusicTrack at-

tribute), 65
item_class (soco.data_structures.DidlObject at-

tribute), 63
item_class (soco.data_structures.DidlPerson at-

tribute), 72
item_class (soco.data_structures.DidlPlaylistContainer

attribute), 74
item_class (soco.data_structures.DidlPlaylistContainerFavorite

attribute), 75
item_class (soco.data_structures.DidlPlaylistContainerTracklist

attribute), 76
item_class (soco.data_structures.DidlRadioShow at-

tribute), 77
item_class (soco.data_structures.DidlRecentShow

attribute), 67
item_class (soco.data_structures.DidlSameArtist at-

tribute), 75
item_id (soco.ms_data_structures.MusicServiceItem

Index 145

soco Documentation, Release 0.27.0

attribute), 98
iter_actions() (soco.services.Service method), 108
iter_event_vars() (soco.services.Service method),

108

J
join() (soco.core.SoCo method), 52
JsonFileTokenStore (class in

soco.music_services.token_store), 20

K
key (soco.music_services.accounts.Account attribute),

19

L
label (soco.groups.ZoneGroup attribute), 95
last_alarm_list_version (soco.alarms.Alarms

attribute), 36
library_updating (soco.music_library.MusicLibrary

attribute), 102
list_library_shares()

(soco.music_library.MusicLibrary method),
103

listen() (soco.events.EventListener method), 83
listen() (soco.events_base.EventListenerBase

method), 87
listen() (soco.events_twisted.EventListener method),

90
ListOfMusicInfoItems (class in

soco.data_structures), 78
load_token_pair()

(soco.music_services.token_store.JsonFileTokenStore
method), 20

load_token_pair()
(soco.music_services.token_store.TokenStoreBase
method), 20

log_message() (soco.events.EventNotifyHandler
method), 83

loudness (soco.core.SoCo attribute), 49

M
magic() (soco.plugins.sharelink.ShareClass static

method), 30
make_key() (soco.cache.TimedCache static method),

40
members (soco.groups.ZoneGroup attribute), 95
metadata (soco.exceptions.EventParseException at-

tribute), 93
metadata (soco.music_services.accounts.Account at-

tribute), 19
mic_enabled (soco.core.SoCo attribute), 54
move_in_sonos_playlist() (soco.core.SoCo

method), 59

MR_ConnectionManager (class in soco.services),
109

MS_ConnectionManager (class in soco.services),
109

MSAlbum (class in soco.ms_data_structures), 98
MSAlbumList (class in soco.ms_data_structures), 98
MSArtist (class in soco.ms_data_structures), 99
MSArtistTracklist (class in

soco.ms_data_structures), 99
MSCollection (class in soco.ms_data_structures), 99
MSFavorites (class in soco.ms_data_structures), 99
MSPlaylist (class in soco.ms_data_structures), 99
MSTrack (class in soco.ms_data_structures), 98
music_plugin_play()

(soco.plugins.example.ExamplePlugin
method), 27

music_plugin_stop()
(soco.plugins.example.ExamplePlugin
method), 27

music_source (soco.core.SoCo attribute), 53
music_source_from_uri() (soco.core.SoCo static

method), 53
MusicLibrary (class in soco.music_library), 99
MusicService (class in

soco.music_services.music_service), 22
MusicServiceAuthException, 93
MusicServiceException, 93
MusicServiceItem (class in

soco.ms_data_structures), 96
MusicServices (class in soco.services), 108
MusicServiceSoapClient (class in

soco.music_services.music_service), 21
mute (soco.core.SoCo attribute), 49
mute (soco.groups.ZoneGroup attribute), 96

N
name (soco.plugins.example.ExamplePlugin attribute),

27
name (soco.plugins.plex.PlexPlugin attribute), 33
name (soco.plugins.sharelink.ShareLinkPlugin at-

tribute), 32
name (soco.plugins.SoCoPlugin attribute), 34
name (soco.plugins.wimp.Wimp attribute), 28
NAMESPACES (in module soco.xml), 114
next() (soco.core.SoCo method), 49
nickname (soco.music_services.accounts.Account at-

tribute), 19
night_mode (soco.core.SoCo attribute), 50
NotSupportedException, 93
ns_tag() (in module soco.xml), 114
NullCache (class in soco.cache), 38
number_returned (soco.data_structures.ListOfMusicInfoItems

attribute), 78

146 Index

soco Documentation, Release 0.27.0

O
oa_device_id (soco.music_services.accounts.Account

attribute), 19
only_on_master() (in module soco.core), 41
only_on_soundbars() (in module soco.core), 41

P
parent_id (soco.ms_data_structures.MusicServiceItem

attribute), 98
parse_alarm_payload() (in module soco.alarms),

38
parse_event_xml (in module soco.events_base), 85
partymode() (soco.core.SoCo method), 52
pause() (soco.core.SoCo method), 48
play() (soco.core.SoCo method), 47
play_from_queue() (soco.core.SoCo method), 47
play_mode (soco.alarms.Alarm attribute), 37
play_mode (soco.core.SoCo attribute), 46
play_now() (soco.plugins.plex.PlexPlugin method),

34
play_uri() (soco.core.SoCo method), 47
player_name (soco.core.SoCo attribute), 45
PlexPlugin (class in soco.plugins.plex), 33
port (soco.events_twisted.EventListener attribute), 90
prepare() (soco.soap.SoapMessage method), 112
prepare_headers() (soco.soap.SoapMessage

method), 111
prepare_soap_body() (soco.soap.SoapMessage

method), 112
prepare_soap_envelope()

(soco.soap.SoapMessage method), 112
prepare_soap_header() (soco.soap.SoapMessage

method), 112
prettify() (in module soco.utils), 113
previous() (soco.core.SoCo method), 49
protocol_info (soco.data_structures.DidlResource

attribute), 61
put() (soco.cache._BaseCache method), 38
put() (soco.cache.Cache method), 40
put() (soco.cache.NullCache method), 38
put() (soco.cache.TimedCache method), 39

Q
QPlay (class in soco.services), 109
Queue (class in soco.data_structures), 78
Queue (class in soco.services), 109
queue_size (soco.core.SoCo attribute), 55

R
ramp_to_volume() (soco.core.SoCo method), 46
really_unicode() (in module soco.utils), 113
really_utf8() (in module soco.utils), 113
recurrence (soco.alarms.Alarm attribute), 37

reference (soco.data_structures.DidlFavorite at-
tribute), 68

register() (soco.events_base.SubscriptionsMap
method), 88

register() (soco.events_twisted.SubscriptionsMapTwisted
method), 92

remove() (soco.alarms.Alarm method), 37
remove_alarm_by_id() (in module soco.alarms),

37
remove_from_queue() (soco.core.SoCo method),

56
remove_from_sonos_playlist()

(soco.core.SoCo method), 59
remove_sonos_playlist() (soco.core.SoCo

method), 56
render_NOTIFY() (soco.events_twisted.EventNotifyHandler

method), 90
RenderingControl (class in soco.services), 109
renew() (soco.events.Subscription method), 84
renew() (soco.events_base.SubscriptionBase method),

88
renew() (soco.events_twisted.Subscription method), 91
reorder_sonos_playlist() (soco.core.SoCo

method), 57
repeat (soco.core.SoCo attribute), 46
REQUEST_TIMEOUT (in module soco.config), 41
requested_port_number

(soco.events_base.EventListenerBase at-
tribute), 86

requested_timeout
(soco.events_base.SubscriptionBase attribute),
87

Resource (class in soco.events_twisted), 90
restore() (soco.snapshot.Snapshot method), 111
RFC

RFC 3986, 61
run() (soco.events.EventServerThread method), 83

S
save() (soco.alarms.Alarm method), 37
save_collection()

(soco.music_services.token_store.JsonFileTokenStore
method), 20

save_token_pair()
(soco.music_services.token_store.JsonFileTokenStore
method), 20

save_token_pair()
(soco.music_services.token_store.TokenStoreBase
method), 20

scan_network() (in module soco.discovery), 79
scan_network_any_soco() (in module

soco.discovery), 81
scan_network_by_household_id() (in module

soco.discovery), 80

Index 147

soco Documentation, Release 0.27.0

scan_network_get_by_name() (in module
soco.discovery), 81

scan_network_get_household_ids() (in mod-
ule soco.discovery), 81

scpd_url (soco.services.Service attribute), 105
search() (soco.music_services.music_service.MusicService

method), 25
search_track() (soco.music_library.MusicLibrary

method), 103
search_type (soco.data_structures.SearchResult at-

tribute), 78
SearchResult (class in soco.data_structures), 78
seek() (soco.core.SoCo method), 48
send_command() (soco.services.Service method), 106
send_event() (soco.events_base.SubscriptionBase

method), 88
separate_stereo_pair() (soco.core.SoCo

method), 52
serial_number (soco.music_services.accounts.Account

attribute), 19
server (soco.events.EventServerThread attribute), 83
Service (class in soco.services), 104
service_id (soco.ms_data_structures.MusicServiceItem

attribute), 98
service_id (soco.plugins.plex.PlexPlugin attribute),

34
service_id (soco.plugins.wimp.Wimp attribute), 29
service_info (soco.plugins.plex.PlexPlugin at-

tribute), 34
service_name (soco.plugins.plex.PlexPlugin at-

tribute), 34
service_number() (soco.plugins.sharelink.AppleMusicShare

method), 32
service_number() (soco.plugins.sharelink.DeezerShare

method), 32
service_number() (soco.plugins.sharelink.ShareClass

method), 30
service_number() (soco.plugins.sharelink.SpotifyShare

method), 31
service_number() (soco.plugins.sharelink.SpotifyUSShare

method), 31
service_number() (soco.plugins.sharelink.TIDALShare

method), 31
service_type (soco.music_services.accounts.Account

attribute), 19
service_type (soco.plugins.plex.PlexPlugin at-

tribute), 34
service_type (soco.services.Service attribute), 105
set_relative_volume() (soco.core.SoCo

method), 47
set_relative_volume() (soco.groups.ZoneGroup

method), 96
set_sleep_timer() (soco.core.SoCo method), 57
set_uri() (soco.data_structures.DidlObject method),

64
ShareClass (class in soco.plugins.sharelink), 30
ShareLinkPlugin (class in soco.plugins.sharelink),

32
short_label (soco.groups.ZoneGroup attribute), 95
show_xml() (in module soco.utils), 113
shuffle (soco.core.SoCo attribute), 46
sid (soco.events_base.SubscriptionBase attribute), 87
Snapshot (class in soco.snapshot), 110
snapshot() (soco.snapshot.Snapshot method), 110
SoapFault, 111
SoapMessage (class in soco.soap), 111
SoCo (class in soco.core), 41
soco (soco.services.Service attribute), 105
soco.alarms (module), 34
soco.cache (module), 38
soco.config (module), 40
soco.core (module), 41
soco.data_structures (module), 60
soco.discovery (module), 78
soco.events (module), 82
soco.events_base (module), 85
soco.events_twisted (module), 89
soco.exceptions (module), 93
soco.groups (module), 94
soco.ms_data_structures (module), 96
soco.music_library (module), 99
soco.music_services.accounts (module), 19
soco.music_services.music_service (mod-

ule), 21
soco.music_services.token_store (module),

20
soco.plugins (module), 34
soco.plugins.example (module), 27
soco.plugins.plex (module), 33
soco.plugins.sharelink (module), 30
soco.plugins.spotify (module), 27
soco.plugins.wimp (module), 28
soco.services (module), 104
soco.snapshot (module), 110
soco.soap (module), 111
soco.utils (module), 113
soco.xml (module), 114
SOCO_CLASS (in module soco.config), 40
SoCoException, 93
SoCoFault (class in soco.exceptions), 94
SoCoNotVisibleException, 93
SoCoPlugin (class in soco.plugins), 34
SoCoSlaveException, 93
SoCoUPnPException, 93
sonos_uri_from_id()

(soco.music_services.music_service.MusicService
method), 24

148 Index

soco Documentation, Release 0.27.0

soundbar_audio_input_format (soco.core.SoCo
attribute), 51

soundbar_audio_input_format_code
(soco.core.SoCo attribute), 51

SpotifyShare (class in soco.plugins.sharelink), 31
SpotifyUSShare (class in soco.plugins.sharelink), 31
start() (soco.events_base.EventListenerBase

method), 86
start_library_update()

(soco.music_library.MusicLibrary method),
102

status_light (soco.core.SoCo attribute), 53
stop() (soco.core.SoCo method), 48
stop() (soco.events.EventServerThread method), 83
stop() (soco.events_base.EventListenerBase method),

86
stop_flag (soco.events.EventServerThread attribute),

83
stop_listening() (soco.events.EventListener

method), 84
stop_listening() (soco.events_base.EventListenerBase

method), 87
stop_listening() (soco.events_twisted.EventListener

method), 91
string_has_uri_components() (in module

soco.utils), 114
sub_enabled (soco.core.SoCo attribute), 50
sub_gain (soco.core.SoCo attribute), 50
subscribe() (soco.events.Subscription method), 84
subscribe() (soco.events_base.SubscriptionBase

method), 87
subscribe() (soco.events_twisted.Subscription

method), 91
subscribe() (soco.services.Service method), 107
subscribing() (soco.events_twisted.SubscriptionsMapTwisted

method), 92
Subscription (class in soco.events), 84
Subscription (class in soco.events_twisted), 91
SubscriptionBase (class in soco.events_base), 87
subscriptions (soco.events_base.SubscriptionsMap

attribute), 88
subscriptions_lock

(soco.events_base.SubscriptionsMap attribute),
88

SubscriptionsMap (class in soco.events_base), 88
SubscriptionsMapTwisted (class in

soco.events_twisted), 92
supports_fixed_volume (soco.core.SoCo at-

tribute), 51
surround_enabled (soco.core.SoCo attribute), 50
surround_full_volume_enabled

(soco.core.SoCo attribute), 50
surround_volume_music (soco.core.SoCo at-

tribute), 51

surround_volume_tv (soco.core.SoCo attribute), 51
switch_to_line_in() (soco.core.SoCo method),

52
switch_to_tv() (soco.core.SoCo method), 53
SystemProperties (class in soco.services), 109

T
tag (soco.data_structures.DidlAlbum attribute), 69
tag (soco.data_structures.DidlAlbumList attribute), 73
tag (soco.data_structures.DidlAudioBook attribute), 66
tag (soco.data_structures.DidlAudioBroadcast at-

tribute), 67
tag (soco.data_structures.DidlAudioBroadcastFavorite

attribute), 68
tag (soco.data_structures.DidlAudioItem attribute), 65
tag (soco.data_structures.DidlComposer attribute), 72
tag (soco.data_structures.DidlContainer attribute), 69
tag (soco.data_structures.DidlFavorite attribute), 68
tag (soco.data_structures.DidlGenre attribute), 76
tag (soco.data_structures.DidlItem attribute), 64
tag (soco.data_structures.DidlMusicAlbum attribute),

70
tag (soco.data_structures.DidlMusicAlbumCompilation

attribute), 71
tag (soco.data_structures.DidlMusicAlbumFavorite at-

tribute), 71
tag (soco.data_structures.DidlMusicArtist attribute), 73
tag (soco.data_structures.DidlMusicGenre attribute), 77
tag (soco.data_structures.DidlMusicTrack attribute), 66
tag (soco.data_structures.DidlObject attribute), 63
tag (soco.data_structures.DidlPerson attribute), 72
tag (soco.data_structures.DidlPlaylistContainer at-

tribute), 74
tag (soco.data_structures.DidlPlaylistContainerFavorite

attribute), 75
tag (soco.data_structures.DidlPlaylistContainerTracklist

attribute), 76
tag (soco.data_structures.DidlRadioShow attribute), 77
tag (soco.data_structures.DidlRecentShow attribute), 67
tag (soco.data_structures.DidlSameArtist attribute), 75
tag (soco.exceptions.EventParseException attribute), 93
tags_with_text() (in module

soco.ms_data_structures), 96
TIDALShare (class in soco.plugins.sharelink), 31
time_left (soco.events_base.SubscriptionBase

attribute), 88
TimedCache (class in soco.cache), 38
timeout (soco.events_base.SubscriptionBase at-

tribute), 87
title (soco.ms_data_structures.MusicServiceItem at-

tribute), 98
to_dict (soco.ms_data_structures.MusicServiceItem

attribute), 97

Index 149

soco Documentation, Release 0.27.0

to_dict() (soco.data_structures.DidlObject method),
63

to_dict() (soco.data_structures.DidlResource
method), 62

to_didl_string() (in module
soco.data_structures), 60

to_element() (soco.data_structures.DidlObject
method), 63

to_element() (soco.data_structures.DidlResource
method), 62

TokenStoreBase (class in
soco.music_services.token_store), 20

total_matches (soco.data_structures.ListOfMusicInfoItems
attribute), 78

treble (soco.core.SoCo attribute), 49
trueplay (soco.core.SoCo attribute), 51

U
uid (soco.core.SoCo attribute), 45
uid (soco.groups.ZoneGroup attribute), 95
unjoin() (soco.core.SoCo method), 52
UnknownSoCoException, 93
UnknownXMLStructure, 93
unregister() (soco.events_base.SubscriptionsMap

method), 89
unsubscribe() (soco.events.Subscription method),

85
unsubscribe() (soco.events_base.SubscriptionBase

method), 88
unsubscribe() (soco.events_twisted.Subscription

method), 92
unwrap_arguments() (soco.services.Service static

method), 105
update() (soco.alarms.Alarm method), 37
update() (soco.alarms.Alarms method), 36
update_id (soco.data_structures.ListOfMusicInfoItems

attribute), 78
uri (soco.data_structures.DidlResource attribute), 61
uri (soco.ms_data_structures.MSAlbum attribute), 98
uri (soco.ms_data_structures.MSAlbumList attribute),

99
uri (soco.ms_data_structures.MSArtistTracklist at-

tribute), 99
uri (soco.ms_data_structures.MSPlaylist attribute), 99
uri (soco.ms_data_structures.MSTrack attribute), 98
url_escape_path() (in module soco.utils), 114
username (soco.music_services.accounts.Account at-

tribute), 19
username (soco.plugins.wimp.Wimp attribute), 28

V
Vartype (class in soco.services), 104
version (soco.services.Service attribute), 105
visible_zones (soco.core.SoCo attribute), 52

voice_service_configured (soco.core.SoCo at-
tribute), 53

volume (soco.alarms.Alarm attribute), 37
volume (soco.core.SoCo attribute), 49
volume (soco.groups.ZoneGroup attribute), 96

W
Wimp (class in soco.plugins.wimp), 28
wrap_arguments() (soco.services.Service static

method), 105

Z
ZoneGroup (class in soco.groups), 94
ZoneGroupTopology (class in soco.services), 109

150 Index

	Contents
	Getting started
	Installation
	From PyPI with pip
	Manual installation from .tar.gz file
	After installation check

	Tutorial
	Discovery
	Music

	Examples
	Getting your devices
	Getting all your devices
	Getting any device
	Getting a named device

	Handling groups of devices
	Information about a group
	Join/unjoin devices
	Party mode

	Playback control
	Play, pause and stop
	More playback control with next, previous and seek
	Control of a group

	Seeing and manipulating the queue
	Getting the queue
	Clearing the queue

	Listing and deleting music library shares

	Frequently Asked Questions
	Why can’t I play a URI from music service X with the play_uri() method?
	Why can’t I add a URI from music service X to the queue with the add_uri_to_queue() method?
	Can I make my Sonos® speaker play music from my local hard drive with SoCo?
	How can I save, then restore the previous playing Sonos state ?

	Plugins
	Creating a Plugin
	Using a Plugin
	The SoCoPlugin class

	Authors
	Project Creator
	Maintainers
	Contributors

	Speaker Topologies
	Zone Group

	UPnP Services
	Inspecting
	Events

	Events
	The events_twisted module
	The events_asyncio module
	Example: setting up
	soco.events
	soco.events_twisted
	soco.events_asyncio

	Examples: specific features
	Autorenewal
	Timeout
	Renewal
	Autorenew failure
	Lenient error handling
	Events_twisted: adding callbacks and errbacks

	The Music Library Data Structures
	soco package
	Subpackages
	soco.music_services package
	soco.plugins package

	Submodules
	soco.alarms module
	soco.cache module
	soco.config module
	soco.core module
	soco.data_structures module
	soco.discovery module
	soco.events module
	soco.events_base module
	soco.events_twisted module
	soco.events_asyncio module
	soco.exceptions module
	soco.groups module
	soco.ms_data_structures module
	soco.music_library module
	soco.services module
	soco.snapshot module
	soco.soap module
	soco.utils module
	soco.xml module

	SoCo releases
	SoCo 0.26 Release Notes
	SoCo 0.25 Release Notes
	SoCo 0.24 Release Notes
	SoCo 0.23 release notes
	New Features and Improvements
	Developer/Code Improvements
	Complete list of significant changes since v0.22

	SoCo 0.22 release notes
	New Features and Improvements
	Developer/Code Improvements
	Complete list of significant changes since v0.21

	SoCo 0.21 release notes
	New Features and Improvements
	Bug Fixes
	Developer Improvements
	List of Changes Associated with the 0.21 Milestone

	SoCo 0.20 release notes
	New Features and Improvements
	Bugfixes
	Developer improvements

	SoCo 0.19 release notes
	New Features and Improvements
	Bugfixes

	SoCo 0.18 release notes
	New Features and Improvements

	SoCo 0.17 release notes
	New Features and Improvements
	Bugfixes

	SoCo 0.16 release notes
	New Features and Improvements
	Bugfixes

	SoCo 0.15 release notes
	New Features and Improvements
	Bugfixes
	Backwards Compatability

	SoCo 0.14 release notes
	New Features and Improvements
	Bugfixes

	SoCo 0.13 release notes
	New Features and Improvements
	Bugfixes
	Backwards Compatability

	SoCo 0.12 release notes
	New Features and Improvements
	Bugfixes
	Backwards Compatability

	SoCo 0.11.1 release notes
	Bugfixes

	SoCo 0.11 release notes
	New Features and Improvements
	Bugfixes
	Backwards Compatability

	SoCo 0.10 release notes
	New Features
	Improvements
	Bugfixes
	Backwards Compatability

	SoCo 0.9 release notes
	New Features
	Improvements
	Backwards Compatability

	SoCo 0.8 release notes
	New Features
	Improvements
	Backwards Compatability

	SoCo 0.7 release notes
	New Features
	Backwards Compatability

	SoCo 0.6 release notes
	New features
	For SoCo developers
	Coming next

	Unit and integration tests
	Setting up your environment
	Running the unit tests
	Running the integration tests
	Unit test code structure and naming conventions
	One unit test module per class under test
	One unit test class per method under test

	Add an unit test to an existing unit test module
	Special unit test design consideration for SoCo

	Add a new unit test module (for a new class under test)
	The init function

	Release Procedures
	Preparations
	Create and Publish
	Wrap-Up
	Preparation for next release

	Indices and tables
	Python Module Index
	Index

